Advertisement

Catalysis in Industry

, Volume 11, Issue 3, pp 251–263 | Cite as

Immobilized Enzymes from the Class of Oxidoreductases in Technological Processes: A Review

  • B. B. TikhonovEmail author
  • E. M. SulmanEmail author
  • P. Yu. Stadol’nikovaEmail author
  • A. M. SulmanEmail author
  • E. P. GolikovaEmail author
  • A. I. SidorovEmail author
  • V. G. MatveevaEmail author
BIOCATALYSIS
  • 26 Downloads

Abstract

The main fields of application of immobilized enzymes from the class of oxidoreductases and prospects for their use in technological processes were analyzed. The structure of the most important enzymes from the class of oxidoreductases and the mechanisms of their catalytic action were described. The main factors affecting the activity of enzymes, methods for their immobilization, and examples of effective use in technological processes were given. The main trends in the development of this field were analyzed.

Keywords:

enzymes oxidoreductases immobilization application technological processes industry 

Notes

FUNDING

This study was financially supported by the Russian Foundation for Basic Research (grant no. 18-08-00424) and Russian Scientific Foundation (project no. 17-19-01408).

REFERENCES

  1. 1.
    Varfolomeev, S.D., Khimicheskaya enzimologiya (Chemical Enzymology), Moscow: Academa, 2005.Google Scholar
  2. 2.
    Wohlgemuth, R., Curr. Opin. Biotechnol., 2010., vol. 21, no. 6, pp. 713–724.CrossRefPubMedGoogle Scholar
  3. 3.
    Sanchez, S. and Demain, A.L., Org. Process Res. Dev., 2011, vol. 15, no. 1, pp. 224–230.CrossRefGoogle Scholar
  4. 4.
    Li, S., Yang, X., Yang, S., Zhu, M., and Wang, X., Comput. Struct. Biotechnol. J., 2012, vol. 2, no. 3, e201209017.  https://doi.org/10.5936/csbj.201209017
  5. 5.
    Martínez, A.T., Ruiz-Dueñas, F.J., Camarero, S., Serrano, A., Linde, D., Lund, H., Vind, J., Tovborg, M., Herold-Majumdar, O.M., Hofrichter, M., Liers, C., Ullrich, R., Scheibner, K., Sannia, G., Piscitelli, A., Pezzella, C., Sener, M.E., Kılıç, S., and Alcalde, M., Biotechnol. Adv., 2017, vol. 35, no. 6, pp. 815–831.CrossRefPubMedGoogle Scholar
  6. 6.
    Guzik, U., Hupert-Kocurek, K., and Wojcieszyńska, D., Molecules, 2014, vol. 19, no. 7, pp. 8995–9018.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schmid, A., Dordick, J.S., Hauer, B., Kiener, A., Wubbolts, M., and Witholt, B., Nature, 2001, vol. 409, no. 6817, pp. 258–268.CrossRefPubMedGoogle Scholar
  8. 8.
    Cowan, D.A. and Fernandez-Lafuente, R. Enzyme Microb. Technol., 2011, vol. 49, no. 4, pp. 326–346.CrossRefPubMedGoogle Scholar
  9. 9.
    Hanefeld, U., Gardossi, L., and Magner, E., Chem. Soc. Rev., 2009, vol. 38, no. 2, pp. 453–468.CrossRefPubMedGoogle Scholar
  10. 10.
    Price, N.C. and Stevens, L., Fundamentals of Enzymology: the Cell and Molecular Biology of Catalytic Proteins, Oxford: Oxford University Press, 2000.Google Scholar
  11. 11.
    Veitch, N.C., Phytochemistry, 2004, vol. 65, no. 3, pp. 249–259.CrossRefPubMedGoogle Scholar
  12. 12.
    Dunford, H.B. and Stillman, J.S., Coord. Chem. Rev., 1976, vol. 19, no. 3, pp. 187–251.CrossRefGoogle Scholar
  13. 13.
    Klibanov, A.M., Tu, T.-M., and Scott, K.P., Science, 1983, vol. 221, no. 4607, pp. 259–261.CrossRefPubMedGoogle Scholar
  14. 14.
    Bhattacharyya, D.K., Bandyopadhyay, U., and Banerjee, R.K, J. Biol. Chem., 1993, vol. 268, no. 30, pp. 22292–22298.PubMedGoogle Scholar
  15. 15.
    Arnao, M.B., Acosta, M., del Rio, J.A., Varón, R., and García-Cánovas, F., Biochim. Biophys. Acta, 1990, vol. 1041, no. 1, pp. 43–47.CrossRefPubMedGoogle Scholar
  16. 16.
    Bevilaqua, J.V., Cammarota, M.C., Freire, D.M.G., and Sant Anna, G.L., Jr., Braz. J. Chem. Eng., 2002, vol. 19, no. 2, pp. 151–158.CrossRefGoogle Scholar
  17. 17.
    Zhang, X. and Flurkey, W.K, J. Food Sci., 1997, vol. 62, no. 1, pp. 97–100.CrossRefGoogle Scholar
  18. 18.
    Olivares, C., and Solano, F., Pigm. Cell Melanoma Res., 2009, vol. 22, no. 6, pp. 750–760.CrossRefGoogle Scholar
  19. 19.
    Pérez-Gilabert, M., Morte, A., Honrubia, M., and García-Carmona, F., Physiol. Plant., 2001, vol. 113, no. 2, pp. 203–209.CrossRefPubMedGoogle Scholar
  20. 20.
    Wilson, R. and Turner, A.P.F., Biosens. Bioelectron., 1992, vol. 7, no. 2, pp. 165–185.CrossRefGoogle Scholar
  21. 21.
    Bankar, S.B., Bule, M.V., Singhal, R.S., and Ananthanarayan, L., Biotechnol. Adv., 2009, vol. 27, no. 4, pp. 489–501.CrossRefPubMedGoogle Scholar
  22. 22.
    Sundaran, U.M., Zhang, H.H., Hedman, B., Hodgson, K.O., and Solomon, E.I., J. Am. Chem. Soc., 1997, vol. 119, no. 51, pp. 12525–12540.CrossRefGoogle Scholar
  23. 23.
    Durán, N., Rosa, M.A., D’Annibale, A., and Gianfreda, L., Enzyme Microb. Technol., 2002, vol. 31, no. 7, pp. 907–931.CrossRefGoogle Scholar
  24. 24.
    Strong, P.J. and Claus, H., Crit. Rev. Environ. Sci. Technol., 2011, vol. 41, no. 4, pp. 373–434.CrossRefGoogle Scholar
  25. 25.
    Encyclopedia of Metalloproteins, Kretsinger, R.H., Uversky, V.N., and Permyakov, E.A., Eds., New York: Springer Science + Business Media, 2013.Google Scholar
  26. 26.
    Renneberg, R., Berkling, V., and Loroch, V., Biotechnology for Beginners, Amsterdam: Elsevier, 2017, ch. 2, pp. 35–63.Google Scholar
  27. 27.
    Volokitina, M.V., Chromatographic biocatalytic new-generation reactors based on microporous sorbents of monolithic type, Doctoral (Chem.) Dissertation, Saint-Petersburg: Inst. Macromol. Compd., Russ. Acad. Sci., 2015, p. 182.Google Scholar
  28. 28.
    Tischer, W. and Wedekind, F., Top. Curr. Chem., 1999, vol. 200, pp. 95–126.CrossRefGoogle Scholar
  29. 29.
    Acebes, S., Fernández-Fueyo, E., Monza, E., Lucas, M.F., Almendral, D., Ruiz-Dueñas, F.J., Lund, H., Martinez, A.T., and Guallar, V., ACS Catal., 2016, vol. 6, no. 3, pp. 1624–1629.CrossRefGoogle Scholar
  30. 30.
    Cantone, S., Ferrario, V., Corici, L., Ebert, C., Fattor, D., Spizzo, P., and Gardossi, L., Chem. Soc. Rev., 2013, vol. 42. No. 15, pp. 6262–6276.CrossRefPubMedGoogle Scholar
  31. 31.
    Jesionowski, T., Zdarta, J., and Krajewska, B., Adsorption, 2014, vol. 20, nos. 5–6, pp. 801–821.Google Scholar
  32. 32.
    Mohamad, N.R., Marzuki, N.H.C., Buang, N.A., Huyop, F., and Wahab, R.A., Biotechnol. Biotechnol. Equip., 2015, vol. 29, no. 2, pp. 205–220.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Brena, B., González-Pombo, P., and Batista-Viera, F., Methods Mol. Biol., 2013, vol. 1051, no. 1, pp. 15–31.CrossRefPubMedGoogle Scholar
  34. 34.
    Nguyen, H.H. and Kim, M., Appl. Sci. Convers. Technol., 2017, vol. 26, no. 6, pp. 157–163.Google Scholar
  35. 35.
    Cao, L., in Carrier-Bound Immobilized Enzymes: Principles, Application, and Design, Weinheim: Wiley-VCH, pp.169–316.Google Scholar
  36. 36.
    Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, Á., Rodrigues, R.C., and Fernandez-Lafuente, R., Biomacromolecules, 2013, vol. 14, no. 8, pp. 2433–2462.CrossRefPubMedGoogle Scholar
  37. 37.
    Zucca., P. and Sanjust, E., Molecules, 2014, vol. 19, no. 9, pp. 14139–14194.Google Scholar
  38. 38.
    Hirsh, S.L., Bilek, M.M.M., Nosworthy, N.J., Kondyurin, A., dos Remedios, C.G., and McKenzie, D.R., Langmuir, 2010, vol. 26, no. 17, pp. 14380–14388.CrossRefPubMedGoogle Scholar
  39. 39.
    Datta, S., Christena, L.R., and Rajaram, Y.R.S., 3 Biotech, 2013, vol. 3, no. 1, pp. 1–9.Google Scholar
  40. 40.
    Zhang, Y., Ge, J., and Liu, Z., ACS Catal., 2015, vol. 5. no. 8, pp. 4503–4513.CrossRefGoogle Scholar
  41. 41.
    Ronzhin, N.O., Indicator test systems using nanodiamonds of detonation synthesis, Cand. Sci. (Biol.) Dissertation, Krasnoyarsk: Inst. Biophys., Russ. Acad. Sci., 2015, p. 125.Google Scholar
  42. 42.
    Zdarta, J., Meyer, A.S., Jesionowski, T., and Pinelo, M., Catalysts, 2018, vol. 8, no. 2, pp. 92–118.CrossRefGoogle Scholar
  43. 43.
    Gholami-Borujeni, F., Mahvi, A.H., Naseri, S., Faramarzi, M.A., Nabizadeh, R., and Alimohammadi, M., Res. J. Chem. Environ., 2011, vol. 15, no. 2, pp. 217–222.Google Scholar
  44. 44.
    Magri, M.L., de las Nieves Loustau, M., Miranda, M.V., and Cascone, O., Biocatal. Biotransform., 2007, vol. 25, no. 1, pp. 98–102.CrossRefGoogle Scholar
  45. 45.
    Hamid M., Khalil-ur-Rehman. Food Chem., 2009, vol. 115, no. 4, pp. 1177–1186.CrossRefGoogle Scholar
  46. 46.
    Pramparo, L., Stüber, F., Font, J., Fortuny, A., Fabregat, A., and Bengoa, C., J. Hazard. Mater., 2010, vol. 177, nos. 1–3, pp. 990–1000.Google Scholar
  47. 47.
    Cho, S.-H., Shim, J., Yun, S.-H., and Moon, S.-H., Appl. Catal., A, 2008, vol. 337, no. 1, pp. 66–72.Google Scholar
  48. 48.
    Bódalo, A., Bastida, J., Máximo, M.F., Montiel, M.C., Gómez, M., and Murica, M.D., Bioprocess Biosyst. Eng., 2008, vol. 31, no. 6, pp. 587–593.CrossRefPubMedGoogle Scholar
  49. 49.
    Acevedo, F., Pizzul, L., Castillo, M., González, M.E., Cea, M., Gianfreda, L., and Diez, M.C., Chemosphere, 2010, vol. 80, no. 3, pp. 271–278.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhai, R., Zhang, B., Wan, Y., Li, C., Wang, J., and Liu, J., Chem. Eng. J., 2013, vol. 214, pp. 304–309.CrossRefGoogle Scholar
  51. 51.
    Matveeva, O.V., Lakina, N.V., Doluda, V.Yu., and Sul’man, E.M., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2014, vol. 57, no. 6, pp. 15–18.Google Scholar
  52. 52.
    Tikhonov, B.B., Sidorov, A.I., and Sul’man, E.M., Katal. Prom-sti, 2007, no. 3, pp. 48–50.Google Scholar
  53. 53.
    Quintanilla-Guerrero, F., Duarte-Vázquez, M.A., Tinoco, R., Gómez-Suárez, M., García-Almendárez, B.E., Vazquez-Duhalt, R., and Regalado, C., J. Agric. Food Chem., 2008, vol. 56, no. 17, pp. 8058–8065.CrossRefPubMedGoogle Scholar
  54. 54.
    Monier, M., Ayad, D.M., Wei, Y., and Sarhan, A.A., Int. J. Biol. Macromol., 2010, vol. 46, no. 3, pp. 324–330.CrossRefPubMedGoogle Scholar
  55. 55.
    Vasileva, N., Godjevargova, T., Ivanova, D., and Gabrovska, K., Int. J. Biol. Macromol., 2009, vol. 44, pp. 190–194.CrossRefPubMedGoogle Scholar
  56. 56.
    Chang, Q. and Tang, H., Molecules, 2014, vol. 19, no. 10, pp. 15768–15782.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Galarraga, J.C., dos Santos, A.F., Bassan, J.C., Goulart, A.J., and Monti, R., Rev. Ciênc. Farm. Basica. Apl., 2013, vol. 34, no. 3, pp. 321–326.Google Scholar
  58. 58.
    Iqbal, H.M.N. and Asgher, M., BMC Biotechnol., 2013, vol. 13, p. 56.CrossRefGoogle Scholar
  59. 59.
    Jamal, F., Singh, S., Khatoon, S., and Mehrotra, S., J. Bioprocess. Biotech., 2013, vol. 3, p. 131.Google Scholar
  60. 60.
    Karim, Z., Adnan, R., and Husain, Q., Int. Biodeterior. Biodegrad., 2012, vol. 72, pp. 10–17.CrossRefGoogle Scholar
  61. 61.
    Janović, B.S., Mićić Vićovac, M.L., Vujčić, Z.M., and Vujčić, M.T., Environ. Sci. Pollut. Res., 2017, vol. 24, no. 4, pp. 3923–3933.CrossRefGoogle Scholar
  62. 62.
    Park, B.-W., Ko, K.-A., Yoon, D.-Y., and Kim, D.-S., Enzyme Microb. Technol., 2012, vol. 51, no. 2, pp. 81–85.Google Scholar
  63. 63.
    Tikhonov, B.B., Stadolnikova, P.Yu., Sidorov, A.I., and Sulman, E.M., Bull. Sci. Pract., 2017, no. 12, pp. 98–104.Google Scholar
  64. 64.
    Matveeva, O.V., Lakina, N.V., Doluda, V.Yu., Shkileva, I.P., Matveeva, V.G., and Sulman, E.M., Catal. Ind., 2015, vol. 7, no. 2, pp. 161–169.CrossRefGoogle Scholar
  65. 65.
    Matveeva, O., Lakina, N., Matveeva, V., Sulman, M., Sulman, E., Valetsky, P., and Doluda, V., Top. Catal., 2011, vol. 54, pp. 1309–1317.CrossRefGoogle Scholar
  66. 66.
    Labus, K., Turek, A., Liesiene, J., and Bryjak, J., Biochem. Eng. J., 2011, vol. 56, no. 3, pp. 232–240.CrossRefGoogle Scholar
  67. 67.
    Dinçer, A., Becerik, S., and Aydemir, T., Int. J. Biol. Macromol., 2012, vol. 50, no. 3, pp. 815–820.CrossRefPubMedGoogle Scholar
  68. 68.
    Bayramoglu, G., Akbulut, A., and Arica, M.Y., J. Hazard. Mater., 2013, vols. 244–245, pp. 528–536.Google Scholar
  69. 69.
    Xu, D.-Y. and Yang, Z., Chemosphere, 2013, vol. 92, no. 4, pp. 391–398.CrossRefPubMedGoogle Scholar
  70. 70.
    Subrizi, F., Crucianelli, M., Grossi, V., Passacantando, M., Pesci, L., and Saladino, R., ACS Catal., 2014, vol. 4, no. 3, pp. 810–822.CrossRefGoogle Scholar
  71. 71.
    Selinheimo, E., Tyrosinase and laccase as novel crosslinking tools for food biopolymers, Doctoral (Thechnol.) Dissertation, Helsinki: Helsinki Univ. Technol., 2008, p. 119.Google Scholar
  72. 72.
    Kuninori, T., Nishiyama, J., and Matsumoto, H., Cereal Chem., 1976, vol. 53, pp. 420–428.Google Scholar
  73. 73.
    Sidorov, A.I., Tikhonov, B.B., Stadol’nikova, P.Yu., and Sul’man, E.M., Aktual. Biotekhnol., 2017, no. 2, pp. 104–108.Google Scholar
  74. 74.
    Ozyilmaz, G. and Tukel, S.S., Appl. Biochem. Microbiol., 2007, vol. 43, no. 1 pp. 29–35.CrossRefGoogle Scholar
  75. 75.
    Rasiah, I.A., Sutton, K.H., Low, F.L., Lin, H.-M., and Gerrard, J.A., Food Chem., 2005, vol. 89, no. 3, pp. 325–332.CrossRefGoogle Scholar
  76. 76.
    Gujral, H.S. and Rosell, C.M., Food Res. Int., 2004, vol. 37, no. 1, pp. 75–81.CrossRefGoogle Scholar
  77. 77.
    Primo-Martín, C., Wang, M., Lichtendonk, W.J., Plijter, J., and Hamer, R.J., J. Sci. Food Agric., 2005, vol. 85, no. 6, pp. 1186–1196.CrossRefGoogle Scholar
  78. 78.
    Rosell, C.M., Wang, J., Aja, S., Bean, S., and Lookhart, G., Cereal Chem., 2003, vol. 80, no. 1, pp. 52–55.CrossRefGoogle Scholar
  79. 79.
    Tzanov, T., Costa, S. A., Gübitz, G. M., and Cavaco-Paulo, A., J. Biotechnol., 2002, vol. 93, no. 1, pp. 87–94.CrossRefPubMedGoogle Scholar
  80. 80.
    Opwis, K., Knittel, D., Schollmeyer, E., Hoferichter, P., and Cordes, A., Eng. Life Sci., 2008, vol. 8, no. 2, pp. 175–178.CrossRefGoogle Scholar
  81. 81.
    Dong, L.C., Wang, G., Xiao, Y., Xu, Y., Zhou, X., Jiang, H., and Luo, Q., Chem. Biochem. Eng. Q., 2011, vol. 25, no. 3, pp. 395–402.Google Scholar
  82. 82.
    Wang, X., Zhu, K.-X., and Zhou, H.-M., Int. J. Mol. Sci., 2011, vol. 12, no. 5, pp. 3042–3054.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tang, L., Yang, R., Hua, X., Yu, C., Zhang, W., and Zhao, W., Food Chem., 2014, vol. 161, pp. 1–7.CrossRefPubMedGoogle Scholar
  84. 84.
    Jang, E., Park, S., Park, S., Lee, Y., Kim, D.-N., Kim, B., and Koh, W.-G., Polym. Adv. Technol., 2010, vol. 21, no. 7, pp. 476–482.Google Scholar
  85. 85.
    Sittiwet, C., Srisa-ard, M., and Baimark, Y., Malays. Polym. J., 2010, vol. 5, no. 2, pp. 108–116.Google Scholar
  86. 86.
    Hashemifard, N., Mohsenifar, A., Ranjbar, B., Allameh, A., Lotfi, A.S., and Etemadikia, B., Anal. Chim. Acta, 2010, vol. 675, no. 2, pp. 181–184.CrossRefPubMedGoogle Scholar
  87. 87.
    Wang, H., Huang, J., Wang, C., Li, D., Ding, L., and Han, Y., Appl. Surf. Sci., 2011, vol. 257, no. 13, pp. 5739–5745.CrossRefGoogle Scholar
  88. 88.
    Lee, H.U., Park, C., and Kim, S.W., Process Biochem., 2012, vol. 47, no. 8, pp. 1282–1286.CrossRefGoogle Scholar
  89. 89.
    Golikova, E.P., Lakina, N.V., Grebennikova, O.V., Matveeva, V.G., and Sulman, E.M., Faraday Discuss., 2017, vol. 202, pp. 303–314.CrossRefPubMedGoogle Scholar
  90. 90.
    Dehghanifard, E., Jafari, A.J., Kalantary, R.R., Mahvi, A.H., Faramarzi, M.A., and Esrafili, A., Iran. J. Environ. Health Sci. Eng., 2013, vol. 10, no. 1, p. 25.CrossRefGoogle Scholar
  91. 91.
    Widsten, P., and Kandelbauer, A., Enzyme Microb. Technol., 2008, vol. 42, no. 4, pp. 293–307.CrossRefGoogle Scholar
  92. 92.
    Fernández-Fernández, M, Sanromán, M.Á., and Moldes. D, Biotechnol. Adv., 2013, vol. 31, no. 8, pp. 1808–1825.CrossRefPubMedGoogle Scholar
  93. 93.
    Liu, Y., Zeng, Z., Zeng, G., Tang, L., Pang, Y., Li, Z., Liu, C., Lei, X., Wu, M., Ren, P., Liu, Z., Chen, M., and Xie, G., Bioresour. Technol., 2012, vol. 115, pp. 21–26.CrossRefPubMedGoogle Scholar
  94. 94.
    Nicolucci, C., Rossi, S., Menale, C., Godjevargova, T., Ivanov, Y., Bianco, M., Mita, L., Bencivenga, U., Mita, D.G., and Diano, N., Biodegradation, 2011, vol. 22, no. 3, pp. 673–683.CrossRefPubMedGoogle Scholar
  95. 95.
    Wang, Q., Ciu, J., Li, G., Zhang, J., Li, D., Huang, F., and Wie, Q., Molecules, 2014, vol. 19, no. 3, pp. 3376–3388.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Xu, R., Chi, C., Li, F., and Zhang, B., ACS Appl. Mater. Interfaces, 2013, vol. 5, pp. 12554–12560.CrossRefPubMedGoogle Scholar
  97. 97.
    Galliker, P., Hommes, G., Schlosser, D., Corvini, P.F.-X., Shahgaldian, P., J. Colloid Interface Sci., 2010, vol. 349, no. 1, pp. 98–105.CrossRefPubMedGoogle Scholar
  98. 98.
    Jia, J., Zhang, S., Wang, P., and Wang, H., J. Hazard. Mater., 2012, vols. 205–206, pp. 150–155.Google Scholar
  99. 99.
    Cristóvão, R.O., Silvério, S.C., Tavares, A.P.M., Brígida, A.I.S., Loureiro, J.M., Boaventura, R.A.R., Macedo, E.A., and Coelho, M.A.Z., World J. Microbiol. Biotechnol., 2012, vol. 28, no. 9, pp. 2827–2838.CrossRefPubMedGoogle Scholar
  100. 100.
    Mogharabi, M., Nassiri-Koopaei, N., Bozorgi-Koushalshahi, M., Nafissi-Varcheh, N., Bagherzadeh, G., and Faramarzi, M.A., Bioinorg. Chem. Appl., 2012, vol. 2012, pp. 823830:1–823830:6. https://doi.org/10.1155/2012/823830
  101. 101.
    Peralta-Zamora, P., Pereira, C.M., Tiburtius, E.R.L., Moraes, S.G., Rosa, M.A., Minussi, R.C., and Durán, N., Appl. Catal., B, 2003, vol. 42, no. 2, pp. 131–144.CrossRefGoogle Scholar
  102. 102.
    Jořenek, M. and Zajoncová, L., Chem. Biochem. Eng. Q., 2015, vol. 29, no. 3, pp. 457–466.CrossRefGoogle Scholar
  103. 103.
    Chao, C., Guan, H., Zhang, J., Liu, Y., Zhao, Y., and Zhang, B., Water Sci. Technol., 2018, vol. 77, no. 3, pp. 809–818.CrossRefPubMedGoogle Scholar
  104. 104.
    Labat, E., Morel, M.H., and Rouau, X., Cereal Chem., 2000, vol. 77, no. 6, pp. 823–828.CrossRefGoogle Scholar
  105. 105.
    Kirk, O., Borchert, T.V., and Fuglsang, C.C., Curr. Opin. Biotechnol., 2002, vol. 13, no. 4, pp. 345–351.CrossRefPubMedGoogle Scholar
  106. 106.
    Matveeva, O.V., Lakina, N.V., Doluda, V.Yu., and Sul’man, E.M., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2013, vol. 56, no. 11, pp. 13–18.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Tver State Technical UniversityTverRussia
  2. 2.Тver State UniversityTverRussia

Personalised recommendations