Advertisement

Catalysis in Industry

, Volume 11, Issue 1, pp 65–73 | Cite as

Studying the Effect of the Process Temperature on the Degree of Bio-Oil Hydrotreatment at Low Hydrogen Contents over NiCu–SiO2 Catalyst with a High Metal Loading

  • A. A. SmirnovEmail author
  • M. V. Alekseeva
  • O. A. Bulavchenko
  • V. A. Yakovlev
CATALYSIS IN PETROLEUM REFINING INDUSTRY
  • 9 Downloads

Abstract

The hydrotreatment of pyrolysis bio-oil by hydrodeoxygenation at 6.0 MPa initial hydrogen pressure in the temperature range of 150–350°C and the presence of a NiCu–SiO2 catalyst synthesized using the sol-gel method is studied. The stability of the catalyst including the agglomeration of active component particles and the deposition of carbon on its surface is also investigated. It is shown that the content of oxygen in the products of the hydrotreatment of lignocellulose pyrolysis liquid decreases from 37 to 15 wt % upon an increase in the process temperature. Using a CHNS-O-analyzer, it is established that the amount of coke on the catalyst’s surfaces at a temperature of 350°C decreases by 4 times, compared with that formed at 150°C. X-ray diffraction shows that increasing the process temperature results in the gradual agglomeration of particles with a subsequent reduction in their size at high temperatures due to the dissolution of active catalyst components in the reaction medium.

Keywords:

bio-oil hydrotreatment Ni–Cu catalyst catalyst with high metal loading hydrodeoxygenation 

Notes

ACKNOWLEDGMENTS

This work was conducted within the framework of the budget project no. АААА-А17-117041710075-0 for the Boreskov Institute of Catalysis.

REFERENCES

  1. 1.
    Energy Scenarios of the Shell Group Corporation until 2050. http://www.kommersant.ru/docs/Shell/Energy.pdf. Cited January 14, 2019.Google Scholar
  2. 2.
    Kuznetsov, B.N., Sharypov, V.I., Kuznetsova, S.A., Taraban’ko, V.E., and Ivanchenko, N.M., Int. J. Hydrogen Energy, 2009, vol. 34, no. 16, pp. 7051–7056.CrossRefGoogle Scholar
  3. 3.
    Jayasinghe, P. and Hawboldt, K., Renewable Sustainable Energy Rev., 2012, vol. 16, no. 1, pp. 798–821.CrossRefGoogle Scholar
  4. 4.
    Naik, S.N., Goud, V.V., Rout, P.K., and Dalai, A.K., Renewable Sustainable Energy Rev., 2010, vol. 14, no. 2, pp. 578–597.CrossRefGoogle Scholar
  5. 5.
    Czernik, S. and Bridgwater, A.V., Energy Fuels, 2004, vol. 18, no. 2, pp. 590–598.CrossRefGoogle Scholar
  6. 6.
    Bridgwater, A.V., Biomass Bioenergy, 2012, vol. 38, pp. 68–94.CrossRefGoogle Scholar
  7. 7.
    Zhang, Q., Chang, J., Wang, T. and Xu, Y., Energy Convers. Manage., 2007, vol. 48, no. 1, pp. 87–92.CrossRefGoogle Scholar
  8. 8.
    Oasmaa, A. and Peacocke, C., A Guide to Physical Property Characterization of Biomass-Derived Fast Pyrolysis Liquids, Espoo, Finland: VTT Publications, 2001. https://www.vtt.fi/Documents/P450.pdf. Cited January 14, 2019.Google Scholar
  9. 9.
    Zhang, X., Wang, T., Ma, L., Zhang, Q., and Jiang, T., Bioresour. Technol., 2013, vol. 127, pp. 306–311.CrossRefGoogle Scholar
  10. 10.
    Trane-Restrup, R. and Jensen, A.D., Appl. Catal., B, 2015, vol. 165, pp. 117–127.CrossRefGoogle Scholar
  11. 11.
    Mortensen, P.M., Grunwaldt, J.-D., Jensen, P.A., and Jensen, A.D., Catal. Today, 2016, vol. 259, part 2, pp. 277–284.CrossRefGoogle Scholar
  12. 12.
    Yakovlev, V.A., Khromova, S.A., Sherstyuk, O.V., Dundich, V.O., Ermakov, D.Y., Novopashina, V.M., Lebedev, M.Y., Bulavchenko, O., and Parmon, V.N., Catal. Today, 2009, vol. 144, nos. 3–4, pp. 362–366.Google Scholar
  13. 13.
    Cheng, S., Wei, L., Zhao, X., Kadis, E., Cao, Y., Julson, J., and Gu, Z., New Biotechnol., 2016, vol. 33, no. 4, pp. 440–448.CrossRefGoogle Scholar
  14. 14.
    Zhang, X., Wang, T., Ma, L., Zhang, Q., Yu, Y., and Liu, Q., Catal. Commun., 2013, vol. 33, pp. 15–19.CrossRefGoogle Scholar
  15. 15.
    Mile, B., Stirling, D., Zammitt, M.A., Lovell, A., and Webb, M., J. Catal., 1988, vol. 114, no. 2, pp. 217–229.CrossRefGoogle Scholar
  16. 16.
    Lee, J.-H., Lee, E.-G., Joo, O.-S., and Jung, K.-D., Appl. Catal., A, 2004, vol. 269, nos. 1–2, pp. 1–6.Google Scholar
  17. 17.
    Yin, W., Kloekhorst, A., Venderbosch, R.H., Bykova, M.V., Khromova, S.A., Yakovlev, V.A., and Heeres, H.J., Catal. Sci. Technol., 2016, vol. 6, no. 15, pp. 5899–5915.CrossRefGoogle Scholar
  18. 18.
    Ermakova, M.A. and Ermakov, D.Y., Appl. Catal., A, 2003, vol. 245, no. 2, pp. 277–288.Google Scholar
  19. 19.
    Wildschut, J., Iqbal, M., Mahfud, F.H., Cabrera, I.M., Venderbosch, R.H., and Heeres, H.J., Energy Environ. Sci., 2010, vol. 3, no. 7, pp. 962–970.CrossRefGoogle Scholar
  20. 20.
    Zhang, X., Zhang, Q., Wang, T., Li, B., Xu, Y., and Ma, L., Fuel, 2016, vol. 179, pp. 312–321.CrossRefGoogle Scholar
  21. 21.
    Bykova, M.V., Ermakov, D.Y., Kaichev, V.V., Bulavchenko, O.A., Saraev, A.A., Lebedev, M.Y., and Yakovlev, V., Appl. Catal., B, 2012, vols. 113–114, pp. 296–307.Google Scholar
  22. 22.
    Bykova, M.V., Ermakov, D.Y., Khromova, S.A., Smirnov, A.A., Lebedev, M.Y., and Yakovlev, V., Catal. Today, 2014, vols. 220–222, pp. 21–31.Google Scholar
  23. 23.
    Khromova, S.A., Bykova, M.V., Bulavchenko, O.A., Ermakov, D.Y., Saraev, A.A., Kaichev, V.V., Venderbosch, R.H., and Yakovlev, V.A., Top. Catal., 2016, vol. 59, no. 15, pp. 1413–1423.CrossRefGoogle Scholar
  24. 24.
    Khromova, S.A., Smirnov, A.A., Bulavchenko, O.A., Saraev, A.A., Kaichev, V.V., Reshetnikov, S.I., and Yakovlev, V.A., Appl. Catal., A, 2014, vol. 470, pp. 261–270.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Smirnov
    • 1
    • 2
    Email author
  • M. V. Alekseeva
    • 1
    • 2
  • O. A. Bulavchenko
    • 1
    • 2
  • V. A. Yakovlev
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations