Advertisement

Catalysis in Industry

, Volume 11, Issue 1, pp 34–44 | Cite as

Ways of Synthesizing Dichloro-[2,2]-Paracyclophane: A Review

  • L. L. GoginEmail author
  • D. Yu. Yushchenko
  • V. N. Konev
  • E. E. Sergeev
  • E. G. Zhizhina
  • T. B. Khlebnikova
  • Z. P. Pai
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 15 Downloads

Abstract

Ways of synthesizing dichloro-[2,2]-paracyclophane (dichloroPCP), a valuable monomer for the manufacturing of polymeric coating used in radioelectronics, are described. There are currently no plants for its production in Russia. Analysis of the considered methods of synthesis show the Hofmann elimination of quaternary ammonium salts is the best technique for the industrial production of dichloroPCP. A promising way of conducting the four-stage synthesis of this product in practice is to use such catalytic technologies as catalysis with alkalis and Lewis acids.

Keywords:

paracyclophane synthesis acid–base catalysis 

Notes

ACKNOWLEDGMENTS

This work was performed as part of a budget project no. 17-117041710081-1 for the Boreskov Institute of Cata-lysis, Siberian Branch, Russian Academy of Sciences.

REFERENCES

  1. 1.
    Brown, C.J. and Farthing, A.C., Nature, 1949, vol. 164, no. 4178, pp. 915–916.CrossRefGoogle Scholar
  2. 2.
    Paradies, J., Synthesis, 2001, no. 23, pp. 3749–3766.Google Scholar
  3. 3.
    CN Patent 103613618, 2015.Google Scholar
  4. 4.
    David, O.R.P., Tetrahedron, 2012, vol. 68, no. 44, pp. 8977–8993.CrossRefGoogle Scholar
  5. 5.
    Gibson, S.E. and Knight, J.D., Org. Biomol. Chem., 2003, vol. 1, pp. 1256–1269.CrossRefGoogle Scholar
  6. 6.
    Takenaga, N., Adachi, S., Furusawa, A., Nakamura, K., Suzuki, N., Ohta, Y., Komizy, M., Mukai, C., and Kitagaki, S., Tetrahedron, 2016, vol. 72, no. 43, pp. 6892–6897.CrossRefGoogle Scholar
  7. 7.
    Bisai, V. and Singh, V.K., Tetrahedron Lett., 2016, vol. 57, no. 43, pp. 4771–4784.CrossRefGoogle Scholar
  8. 8.
    Modern Cyclophane Chemistry, Hopf, H. and Gleiter, R., Eds., Weinheim: Wiley-VCH, 2004.Google Scholar
  9. 9.
    De Meijere, A. and König, B., Synlett, 1997, no. 11, pp. 1221–1232.Google Scholar
  10. 10.
    US Patent 3342754, 1967.Google Scholar
  11. 11.
    Hopf, H., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, pp. 9808–9812.CrossRefGoogle Scholar
  12. 12.
    Vögtle, F. and Neumann, P., Synthesis, 1973, no. 2, pp. 85–103.Google Scholar
  13. 13.
    US Patent 3149175, 1964.Google Scholar
  14. 14.
    US Patent 3247274, 1966.Google Scholar
  15. 15.
    US Patent 3258504, 1966.Google Scholar
  16. 16.
    US Patent 34400295, 1969.Google Scholar
  17. 17.
    RF Patent 2043323, 1992.Google Scholar
  18. 18.
    Shevel’kova, L.V., Sokolovskaya, V.G., and Gusel’nikov, L.E., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1993, vol. 36, no. 7, pp. 80–87.Google Scholar
  19. 19.
    Kawakami, S., Iwaki, S., Nakada, M., and Yamaguchi, T., Bull. Chem. Soc. Jpn., 1991, vol. 64, no. 3, pp. 1000–1004.CrossRefGoogle Scholar
  20. 20.
    US Patent 2013/0109827, 2013.Google Scholar
  21. 21.
    Kirk-Othmer Encyclopedia of Chemical Technology, New York: Wiley, 1999, vol. 26, 4th ed.Google Scholar
  22. 22.
    Kardash, I.E., Pebalk, A.V., and A.V. Pravednikov, Itogi Nauki Tekh., Ser.: Khim. Tekhnol. Vysokomol. Soedin., 1984, vol. 19, p. 84.Google Scholar
  23. 23.
    Otsubo, T., Mizogami, S., Sakata, Y., and Misumi, S., Tetrahedron Lett., 1973, vol. 14, no. 27, pp. 2457–2460.CrossRefGoogle Scholar
  24. 24.
    Pan, D., Wang, Y., and Xiao, G., Beilstein J. Org. Chem., 2016, vol. 12, pp. 2443–2449.CrossRefGoogle Scholar
  25. 25.
    GB Patent 807196, 1956.Google Scholar
  26. 26.
    US Patent 2757146, 1956.Google Scholar
  27. 27.
    US Patent 4675462, 1987.Google Scholar
  28. 28.
    BR 8605269, 1987.Google Scholar
  29. 29.
    Winberg, H.E. and Fawcett, F.S., Org. Synth., 1962, vol. 42, p. 83.CrossRefGoogle Scholar
  30. 30.
    Chow, H.-F., Low, K.-H., and Wong, K.I., Synlett, 2005, no. 14, pp. 2130–2134.Google Scholar
  31. 31.
    Obshchyaya organicjeskaya khimiya (General Organic Chemistry) Kochetkov, N.K., Ed., Moscow: Khimiya, 1981, vol. 3, pp. 68–70.Google Scholar
  32. 32.
    US Patent 4532369, 1985.Google Scholar
  33. 33.
    US Patent 4795838, 1989.Google Scholar
  34. 34.
    US Patent 4806702, 1989.Google Scholar
  35. 35.
    US Patent 4734533, 1988.Google Scholar
  36. 36.
    US Patent 4769505, 1987.Google Scholar
  37. 37.
    US Patent 4816608, 1989.Google Scholar
  38. 38.
    US Patent 4853488, 1989.Google Scholar
  39. 39.
    US Patent 5110903, 1992.Google Scholar
  40. 40.
    Jpn. Patent 041146, 1992.Google Scholar
  41. 41.
    Wang, Z., Dong, F., Lu, J., Lui, J., and Ma, H., Chin. J. Org. Chem., 2001, vol. 21, no. 7, pp. 538–540.Google Scholar
  42. 42.
    Tao, N., Xiao, G., Tong, Y., and Niu, L., Fine Chem., 2009, vol. 26, no. 12, pp. 1159–1162.Google Scholar
  43. 43.
    CN Patent 105348029, 2015.Google Scholar
  44. 44.
    Long, Z., Juan, W., Leng, G., Yulun, X., and Weimin, G., Proc. SPIE, 2005, vol. 6029, pp. 1–6.Google Scholar
  45. 45.
    ChSSR Patent 247592, 1998.Google Scholar
  46. 46.
    RF Patent 2101272, 1998.Google Scholar
  47. 47.
    US Patent 4783561, 1988.Google Scholar
  48. 48.
    US Patent 4849559, 1989.Google Scholar
  49. 49.
    US Patent 5679874, 1997.Google Scholar
  50. 50.
    Jpn. Patent 074759, 1995.Google Scholar
  51. 51.
    Ito, Y., Miyata, S., Nakatsuka, M., and Saegusa, T., J. Org. Chem., 1981, vol. 46, no. 5, pp. 1043–1044.CrossRefGoogle Scholar
  52. 52.
    Cram, D.J. and Steinberg, H., J. Am. Chem. Soc., 1951, vol. 73, no. 12, pp. 5691–5704.CrossRefGoogle Scholar
  53. 53.
    Cram, D.J., Usp. Khim., 1960, vol. 29, no. 8, pp. 1029–1047.Google Scholar
  54. 54.
    Tacahashi, S. and Mori, N., Chem. Lett., 1989, vol. 18, no. 1, pp. 13–14.CrossRefGoogle Scholar
  55. 55.
    Brown, G.W. and Sonheimer, F., J. Am. Chem. Soc., 1967, vol. 89, no. 26, pp. 7116–7117.CrossRefGoogle Scholar
  56. 56.
    Kaplan, M.L. and Truesdale, E.A., Tetrahedron Lett., 1976, vol. 17, no. 41, pp. 3665–3666.CrossRefGoogle Scholar
  57. 57.
    Boekelheide, V., Reingold, I.D., and Tuttle, M., J. Chem. Soc., Chem. Commun., 1973, pp. 406–407.Google Scholar
  58. 58.
    Vögtle, F., Fornell, P., and Löhr, W., Chem. Ind., 1979, p. 416.Google Scholar
  59. 59.
    Coray, A.R., J. Organomet. Chem., 1983, vol. 243, no. 2, pp. 191–193.CrossRefGoogle Scholar
  60. 60.
    PL Patent 162243, 1990.Google Scholar
  61. 61.
    Higuchi, H., Kugimiya, M., Otsubo, T., Sakata, Y., and Misumi, S., Tetrahedron Lett., 1983, vol. 24, no. 25, pp. 2593–2594.CrossRefGoogle Scholar
  62. 62.
    Higuchi, H., Tani, K., Otsubo, T., Sakata, Y., and Misumi, S., Bull. Chem. Soc. Jpn., 1987, vol. 60, no. 11, pp. 4027–4036.CrossRefGoogle Scholar
  63. 63.
    Higuchi, H. and Misumi, S., Tetrahedron Lett., 1982, vol. 23, no. 52, pp. 5571–5574.CrossRefGoogle Scholar
  64. 64.
    Higuchi, H., Otsubo, T., Ogura, F., Yamaguchi, H., Sakata, Y., and Misumi, S., Bull. Chem. Soc. Jpn., 1982, vol. 55, no. 1, pp. 182–187.CrossRefGoogle Scholar
  65. 65.
    Takemura, H., Shinmyozu, T., and Inazu, T., Tetrahedron Lett., 1988, vol. 29, no. 9, pp. 1031–1032.CrossRefGoogle Scholar
  66. 66.
    Isaji, H., Sako, K., Takemura, H., Tatemitsu, H., and Shinmyozi, T., Tetrahedron Lett., 1998, vol. 39, no. 24, pp. 4303–4304.CrossRefGoogle Scholar
  67. 67.
    Isaji, H., Yasutake, M., Takemura, H., Sako, K., Tatemitsu, H., Inazu, T., and Shinmyozi, T., Eur. J. Org. Chem., 2001, vol. 2001, no. 13, pp. 2487–2499.CrossRefGoogle Scholar
  68. 68.
    Kurosawa, K., Suenaga, M., Inazu, T., and Yoshino, T., Tetrahedron Lett., 1982, vol. 23, no. 50, pp. 5335–5338.CrossRefGoogle Scholar
  69. 69.
    Shinmyom, T., Hirai, Y., and Inazu, T., J. Org. Chem., 1986, vol. 51, no. 9, pp. 1551–1555.CrossRefGoogle Scholar
  70. 70.
    Szunerits, S., Utley, J.H.P., and Nielsen, M.F., J. Chem. Soc., Perkin Trans. 2, 2000, vol. 4, pp. 669–675.CrossRefGoogle Scholar
  71. 71.
    US Patent 3616314, 1971.Google Scholar
  72. 72.
    Hopf, H., Angew. Chem., Int. Ed. Engl., 1972, vol. 11, no. 5, pp. 419–420.CrossRefGoogle Scholar
  73. 73.
    US Patent 3221068, 1965.Google Scholar
  74. 74.
    Yeh, V.L. and Gorham, W.F., J. Org. Chem., 1969, vol. 34, no. 8, pp. 2366–2370.CrossRefGoogle Scholar
  75. 75.
    Reich, H.J. and Cram, D.J., J. Am. Chem. Soc., 1969, vol. 91, no. 13, pp. 3527–3533.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. L. Gogin
    • 1
    Email author
  • D. Yu. Yushchenko
    • 1
  • V. N. Konev
    • 1
  • E. E. Sergeev
    • 1
  • E. G. Zhizhina
    • 1
  • T. B. Khlebnikova
    • 1
  • Z. P. Pai
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations