Advertisement

Catalysis in Industry

, Volume 11, Issue 1, pp 7–33 | Cite as

Development of Heterogeneous Catalysts for Dehydration of Methanol to Dimethyl Ether: A Review

  • Hamed BateniEmail author
  • Chad AbleEmail author
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 16 Downloads

Abstract

Dimethyl ether (DME) is a promising multisource and multipurpose clean fuel and value-added chemical synthesized from syngas. This process can be either performed in a single stage (direct process) using a dual catalysis system or a two stage (indirect process) where syngas is first converted into methanol and then dehydrated to produce DME. While the dehydration reaction has been studied extensively over multiple decades, to date no review has been conducted on the catalysts involved in the methanol dehydration reaction. This work demonstrates the state of the art in catalyst preparation and analysis for this application. The dominant catalysts are studied extensively in this work, including γ-Al2O3 and various zeolites, such as ZSM-5, Y, beta and mordenite as well as their relevant modifications. Additionally, silica-alumina, mesoporous silicates, alumina phosphate, silicoaluminophosphates, heteropoly acids (HPAs), metal oxides, ion exchange resins and quasicrystals are discussed in this work, owing to the wide variety of catalysts available and studied for the purposes of methanol dehydration to DME.

Keywords:

dimethyl ether methanol dehydration catalysts DME synthesis catalysts 

Notes

ACKNOWLEDGMENTS

We would like to thank Dr. Jason Trembly and Dr. Jean-Philippe Tessonnier for their kind contribution in proofreading the article and providing technical advices to enrich the present work.

REFERENCES

  1. 1.
    Bateni, H., Bateni, F., and Karimi, K., Waste Biomass Valorization, 2017, vol. 8, no. 6, pp. 1897–1905.CrossRefGoogle Scholar
  2. 2.
    Bateni, H. and Karimi, K., Chem. Eng. Res. Des., 2016, vol. 107, pp. 4–12.CrossRefGoogle Scholar
  3. 3.
    Bateni, H., Karimi, K., Zamani, A., and Benaka-shani, F., Appl. Energy, 2014, vol. 136, pp. 14–22.CrossRefGoogle Scholar
  4. 4.
    International Energy Outlook 2016, Washington, DC: U.S. Energy Information Administration, 2016.Google Scholar
  5. 5.
    Sardesai, A., in Encyclopedia of Chemical Processing, Lee, S. Ed., New York: Taylor & Francis, 2006, pp. 707–717.Google Scholar
  6. 6.
    Bateni, H. and Karimi, K., RSC Adv., 2016, vol. 6, no. 41, pp. 34 492–34 500.CrossRefGoogle Scholar
  7. 7.
    Raoof, F., Taghizadeh, M., Eliassi, A., and Yaripour, F., Fuel, 2008, vol. 87, nos. 13–14, pp. 2967–2971.Google Scholar
  8. 8.
    Tokay, K.C., Dogu, T., and Dogu, G., Chem. Eng. J., 2012, vol. 184, pp. 278–285.CrossRefGoogle Scholar
  9. 9.
    Hayer, F., Bakhtiary-Davijany, H., Myrstad, R., Holmen, A., Pfeifer, P., and Venvik, H.J., Chem. Eng. Process., 2013, vol. 70, pp. 77–85.CrossRefGoogle Scholar
  10. 10.
    Chen, W.-H., Lin, B.-J., Lee, H.-M., and Huang, M.-H., Appl. Energy, 2012, vol. 98, pp. 92–101.CrossRefGoogle Scholar
  11. 11.
    Arcoumanis, C., Bae, C., Crookes, R., and Kinoshita, E., Fuel, 2008, vol. 87, no. 7, pp. 1014–1030.CrossRefGoogle Scholar
  12. 12.
    Namasivayam, A., Korakianitis, T., Crookes, R., Bob-Manuel, K., and Olsen, J., Appl. Energy, 2010, vol. 87, no. 3, pp. 769–778.CrossRefGoogle Scholar
  13. 13.
    Yang, G., Thongkam, M., Vitidsant, T., Yoneyama, Y., Tan, Y., and Tsubaki, N., Catal. Today, 2011, vol. 171, pp. 229–235.CrossRefGoogle Scholar
  14. 14.
    Azizi, Z., Rezaeimanesh, M., Tohidian, T., and Rahimpour, M.R., Chem. Eng. Process., 2014, vol. 82, pp. 150–172.CrossRefGoogle Scholar
  15. 15.
    Hosseini, S.Y. and Nikou, M.R.K., J. Ind. Eng. Chem., 2014, vol. 20, no. 6, pp. 4421–4428.CrossRefGoogle Scholar
  16. 16.
    Papari, S., Kazemeini, M., and Fattahi, M., Chin. J. Chem. Eng., 2013, vol. 21, no. 6, pp. 611–621.CrossRefGoogle Scholar
  17. 17.
    Gogate, M.R., Lee, S., and Kulik, C.J., Fuel Sci. Technol. Int., 1991, vol. 9, pp. 653–679.CrossRefGoogle Scholar
  18. 18.
    Alharbi, W., Kozhevnikova, E.F., and Kozhevnikov, I.V., ACS Catal., 2015, vol. 5, no. 12, pp. 7186–7193.CrossRefGoogle Scholar
  19. 19.
    Carr, R.T., Neurock, M., and Iglesia, E., J. Catal., 2011, vol. 278, no. 1, pp. 78–93.CrossRefGoogle Scholar
  20. 20.
    Moses, P.G. and Nørskov, J.K., ACS Catal., 2013, vol. 3, no. 4, pp. 735–745.CrossRefGoogle Scholar
  21. 21.
    Blaszkowski, S.R. and van Santen, R.A., J. Phys. Chem. B, 1997, vol. 101, no. 13, pp. 2292–2305.CrossRefGoogle Scholar
  22. 22.
    Lesthaeghe, D., van Speybroeck, V., Marin, G.B., and Waroquier, M., Angew. Chem., 2006, vol. 118, no. 11, pp. 1746–1751; Lesthaeghe, D., van Speybroeck, V., Marin, G.B., and Waroquier, M., Angew. Chem., Int. Ed., 2006, vol. 45, no. 11, pp. 1714–1719.CrossRefGoogle Scholar
  23. 23.
    Roy, S., Mpourmpakis, G., Hong, D.-Y., Vlachos, D.G., Bhan, A., and Gorte, R., ACS Catal., 2012, vol. 2, no. 9, pp. 1846–1853.CrossRefGoogle Scholar
  24. 24.
    Kang, M., DeWilde, J.F., and Bhan, A., ACS Catal., 2015, vol. 5, no. 2, pp. 602–612.CrossRefGoogle Scholar
  25. 25.
    Jones, A.J. and Iglesia, E., Angew. Chem., Int. Ed. Engl., 2014, vol. 53, no. 45, pp. 12 177–12 181.CrossRefGoogle Scholar
  26. 26.
    Ghorbanpour, A., Rimer, J.D., and Grabow, L.C., ACS Catal., 2016, vol. 6, no. 4, pp. 2287–2298.CrossRefGoogle Scholar
  27. 27.
    Lee, E.-Y., Park, Y.-K., Joo, O.-S., and Jung, K.-D., React. Kinet. Catal. Lett., 2006, vol. 89, no. 1, pp. 115–121.CrossRefGoogle Scholar
  28. 28.
    Ha, K.-S., Lee, Y.-J., Bae, J.W., Kim, Y.W., Woo, M.H., Kim, H.-S., Park, M.-J., and Jun, K.-W., Appl. Catal., A, 2011, vol. 395, nos. 1–2, pp. 95–106.Google Scholar
  29. 29.
    Gogate, M.R., Lee, B.G., Lee, S., and Kulik, C.J., Pet. Sci. Technol., 1990, vol. 8, no. 6, pp. 637–671.Google Scholar
  30. 30.
    Bercic, G. and Levec, J., Ind. Eng. Chem. Res., 1992, vol. 31, no. 4, pp. 1035–1040.CrossRefGoogle Scholar
  31. 31.
    Yaripour, F., Baghaei, F., Schmidt, I., and Perregaard, J., Catal. Commun., 2005, vol. 6, no. 2, pp. 147–152.CrossRefGoogle Scholar
  32. 32.
    Xia, J., Mao, D., Zhang, B., Chen, Q., Zhang, Y., and Tang, Y., Catal. Commun., 2006, vol. 7, no. 6, pp. 362–366.CrossRefGoogle Scholar
  33. 33.
    Keshavarz, A.R., Rezaei, M., and Yaripour, F., Powder Technol., 2010, vol. 199, no. 2, pp. 176–179.CrossRefGoogle Scholar
  34. 34.
    Khaleel, A., Fuel Process. Technol., 2010, vol. 91, no. 11, pp. 1505–1509.CrossRefGoogle Scholar
  35. 35.
    Hosseininejad, S., Afacan, A., and Hayes, R., Chem. Eng. Res. Des., 2012, vol. 90, no. 6, pp. 825–833.CrossRefGoogle Scholar
  36. 36.
    Sierra, I., Ereña, J., Aguayo, A., Arandes, J., Gayubo, A., and Bilbao, J., Abstracts of Papers, Proc. Sixth Eur. Congr. Chem. Eng. (ECCE-6), Copenhagen, 2007, pp. 16–20.Google Scholar
  37. 37.
    Xu, M., Lunsford, J.H., Goodman, D.W., and Bhattacharyya, A., Appl. Catal., A, 1997, vol. 149, no. 2, pp. 289–301.Google Scholar
  38. 38.
    Vishwanathan, V., Jun, K.-W., Kim, J.-W., and Roh, H.-S., Appl. Catal., A, 2004, vol. 276, pp. 251–255.Google Scholar
  39. 39.
    Kim, S.D., Baek, S.C., Lee, Y.-J., Jun, K.-W., Kim, M.J., and Yoo, I.S., Appl. Catal., A, 2006, vol. 309, no. 1, pp. 139–143.Google Scholar
  40. 40.
    Jiang, S., Hwang, J.-S., Jin, T.-H., Cai, T., Cho, W., Baek, Y.-S., and Park, S.-E., Bull. Korean Chem. Soc., 2004, vol. 25, no. 2, pp. 185–189.CrossRefGoogle Scholar
  41. 41.
    Kim, J.-H., Park, M.J., Kim, S.J., Joo, O.-S., and Jung, K.-D., Appl. Catal., A, 2004, vol. 264, no. 1, pp. 37–41.Google Scholar
  42. 42.
    Joo, O.-S., Jung, K.-D., and Han, S.-H., Bull. Korean Chem. Soc., 2002, vol. 23, no. 8, pp. 1103–1105.CrossRefGoogle Scholar
  43. 43.
    Xia, J., Mao, D., Zhang, B., Chen, Q., and Tang, Y., Catal. Lett., 2004, vol. 98, no. 4, pp. 235–240.CrossRefGoogle Scholar
  44. 44.
    Sang, Y., Liu, H., He, S., Li, H., Jiao, Q., Wu, Q., and Sun, K., J. Energy Chem., 2013, vol. 22, no. 5, pp. 769–777.CrossRefGoogle Scholar
  45. 45.
    Vanoye, L., Favre-Réguillon, A., Munno, P., Rodríguez, J., Dupuy, S., Pallier, S., Pitault, I., and De Bellefon, C., Catal. Today, 2013, vol. 215, pp. 239–242.CrossRefGoogle Scholar
  46. 46.
    Ordomsky, V., Cai, M., Sushkevich, V., Moldovan, S., Ersen, O., Lancelot, C., Valtchev, V., and Khodakov, A., Appl. Catal., A, 2014, vol. 486, pp. 266–275.Google Scholar
  47. 47.
    Mao, D., Yang, W., Xia, J., Zhang, B., Song, Q., and Chen, Q., J. Catal., 2005, vol. 230, no. 1, pp. 140–149.CrossRefGoogle Scholar
  48. 48.
    Sofianos, A.C. and Scurrell, M.S., Ind. Eng. Chem. Res., 1991, vol. 30, no. 11, pp. 2372–2378.CrossRefGoogle Scholar
  49. 49.
    Migliori, M., Aloise, A., Catizzone, E., and Giordano, G., Ind. Eng. Chem. Res., 2014, vol. 53, no. 38, pp. 14 885–14 891.CrossRefGoogle Scholar
  50. 50.
    Herrera, J.E., Kwak, J.H., Hu, J.Z., Wang, Y., and Peden, C.H.F., Top. Catal., 2008, vol. 49, nos. 3–4, pp. 259–267.Google Scholar
  51. 51.
    Varisli, D., Dogu, T., and Dogu, G., Chem. Eng. Sci., 2007, vol. 62, nos. 18–20, pp. 5349–5352.Google Scholar
  52. 52.
    Varisli, D., Dogu, T., and Dogu, G., Ind. Eng. Chem. Res., 2008, vol. 47, pp. 4071–4076.CrossRefGoogle Scholar
  53. 53.
    Ladera, R.M., Fierro, J.L.G., Ojeda, M., and Rojas, S., J. Catal., 2014, vol. 312, pp. 195–203.CrossRefGoogle Scholar
  54. 54.
    Ladera, R.M., Ojeda, M., Fierro, J.L.G., and Rojas, S., Catal. Sci. Technol., 2015, vol. 5, no. 1, pp. 484–491.CrossRefGoogle Scholar
  55. 55.
    Anderson, M.W., Sulikowski, B., Barrie, P.J., and Klinowski, J., J. Phys. Chem., 1990, vol. 94, pp. 2730–2734.CrossRefGoogle Scholar
  56. 56.
    Yoo, K.S., Kim, J.-H., Park, M.-J., Kim, S.-J., Joo, O.-S., and Jung, K.-D., Appl. Catal., A, 2007, vol. 330, pp. 57–62.Google Scholar
  57. 57.
    Travalloni, L., Gomes, A.C.L., Gaspar, A.B., and da Silva, M.A.P., Catal. Today, 2008, vols. 133–135, pp. 406–412.Google Scholar
  58. 58.
    Pop, G., Bozga, G., Ganea, R., and Natu, N., Ind. Eng. Chem. Res., 2009, vol. 48, pp. 7065–7071.CrossRefGoogle Scholar
  59. 59.
    Dai, W., Kong, W., Wu, G., Li, N., Li, L., and Guan, N., Catal. Commun., 2011, vol. 12, no. 6, pp. 535–538.CrossRefGoogle Scholar
  60. 60.
    Yaripour, F., Baghaei, F., Schmidt, I., and Perregaard, J., Catal. Commun., 2005, vol. 6, no. 8, pp. 542–549.CrossRefGoogle Scholar
  61. 61.
    Yaripour, F., Mollavali, M., Jam, S.M., and Atashi, H., Energy Fuels, 2009, vol. 23, no. 4, pp. 1896–1900.CrossRefGoogle Scholar
  62. 62.
    Lertjiamratn, K., Praserthdam, P., Arai, M., and Panpranot, J., Appl. Catal., A, 2010, vol. 378, no. 1, pp. 119–123.Google Scholar
  63. 63.
    Kumar, V.S., Padmasri, A.H., Satyanarayana, C.V.V., Reddy, I.A.K., Raju, B.D., and Rao, K.S.R., Catal. Commun., 2006, vol. 7, no. 10, pp. 745–751.CrossRefGoogle Scholar
  64. 64.
    Tang, C., Peng, J., Li, X., Zhai, Z., Bai, W., Jiang, N., Gao, H., and Liao, Y., Green Chem., 2015, vol. 17, no. 2, pp. 1159–1166.CrossRefGoogle Scholar
  65. 65.
    Ciftci, A., Sezgi, N.A., and Dogu, T., Ind. Eng. Chem. Res., 2010, vol. 49, no. 15, pp. 6753–6762.CrossRefGoogle Scholar
  66. 66.
    An, W., Chuang, K.T., and Sanger, A.R., Can. J. Chem. Eng., 2004, vol. 82, no. 5, pp. 948–955.CrossRefGoogle Scholar
  67. 67.
    Chakrabarti, A. and Sharma, M.M., React. Polym., 1993, vol. 20, nos. 1–2, pp. 1–45.Google Scholar
  68. 68.
    Kolesnichenko, N.V., Kulikov, A.B., Maximov, A.L., Nehaev, A.I., Kulumbekov, R.V., Barabanov, V.G., and Kornilov, V.V., Fluorine Notes, 2011, vol. 74, no. 1. http://en.notes.fluorine1.ru/public/pdfs/74_1_en.pdf. Cited April 17, 2018.Google Scholar
  69. 69.
    Spivey, J.J., Chem. Eng. Commun., 1991, vol. 110, no. 1, pp. 123–142.CrossRefGoogle Scholar
  70. 70.
    Sun, J., Yang, G., Yoneyama, Y., and Tsubaki, N., ACS Catal., 2014, vol. 4, no. 10, pp. 3346–3356.CrossRefGoogle Scholar
  71. 71.
    Saravanan, K., Ham, H., Tsubaki, N., and Bae, J.W., Appl. Catal., B, 2017, vol. 217, pp. 494–522.CrossRefGoogle Scholar
  72. 72.
    Fukui, T. and Hori, M., J. Mater. Sci., 1996, vol. 31, no. 12, pp. 3245–3248.CrossRefGoogle Scholar
  73. 73.
    Padmaja, P., Pillai, P.K., Warrier, K.G.K., and Padmanabhan, M., J. Porous Mater., 2004, vol. 11, no. 3, pp. 147–155.CrossRefGoogle Scholar
  74. 74.
    Baumann, T.F., Gash, A.E., Chinn, S.C., Sawvel, A.M., Maxwell, R.S., and Satcher, J.H., Chem. Mater., 2005, vol. 17, no. 2, pp. 395–401.CrossRefGoogle Scholar
  75. 75.
    Pearson, A., in Kirk-Othmer Encyclopedia of Chemical Technology, Seidel, A., Ed., Hoboken, NJ: John Wiley & Sons, 2003.Google Scholar
  76. 76.
    Panias, D. and Krestou, A., Powder Technol., 2007, vol. 175, no. 3, pp. 163–173.CrossRefGoogle Scholar
  77. 77.
    Elaloui, E., Pierre, A.C., and Pajonk, G.M., J. Catal., 1997, vol. 166, no. 2, pp. 340–346.CrossRefGoogle Scholar
  78. 78.
    Abbattista, F., Delmastro, S., Gozzelino, G., Mazza, D., Vallino, M., Busca, G., Lorenzelli, V., and Ramis, G., J. Catal., 1989, vol. 117, no. 1, pp. 42–51.CrossRefGoogle Scholar
  79. 79.
    Paglia, G., Determination of the structure of y-alumina using empirical and first principle calculations combined with supporting experiments, PhD Thesis, Perth, Australia: Curtin University, 2004.Google Scholar
  80. 80.
    Pines, H. and Pillai, C.N., J. Am. Chem. Soc., 1961, vol. 83, no. 15, pp. 3270–3274.CrossRefGoogle Scholar
  81. 81.
    Seo, C.W., Jung, K.D., Lee, K.Y., and Yoo, K.S., Ind. Eng. Chem. Res., 2008, vol. 47, no. 17, pp. 6573–6578.CrossRefGoogle Scholar
  82. 82.
    Akarmazyan, S.S., Panagiotopoulou, P., Kambolis, A., Papadopoulou, C., and Kondarides, D.I., Appl. Catal., B, 2014, vol. 145, pp. 136–148.CrossRefGoogle Scholar
  83. 83.
    Sung, D.M., Kim, Y.H, Park, E.D., and Yie, J.E., Catal. Commun., 2012, vol. 20, pp. 63–67.CrossRefGoogle Scholar
  84. 84.
    Alamolhoda, S., Kazemeini, M., Zaherian, A., and Zakerinasab, M.R., J. Ind. Eng. Chem., 2012, vol. 18, no. 6, pp. 2059–2068.CrossRefGoogle Scholar
  85. 85.
    Sanchez-Valente, J., Bokhimi, X., and Toledo, J.A., Appl. Catal., A, 2004, vol. 264, no. 2, pp. 175–181.Google Scholar
  86. 86.
    Kim, S.-M., Lee, Y.-J., Bae, J.W., Potdar, H.S., and Jun, K.-W., Appl. Catal., A, 2008, vol. 348, no. 1, pp. 113–120.Google Scholar
  87. 87.
    Liu, L., Huang, W., Gao, Z., and Yin, L., Energy Sources, Part A, 2010, vol. 32, no. 15, pp. 1379–1387.Google Scholar
  88. 88.
    Liu, L., Huang, W., Huang, J., Gao, Z.-H., and Yin, L.-H., Energy Sources, Part A, 2012, vol. 34, no. 8, pp. 682–691.Google Scholar
  89. 89.
    Liu, D., Yao, C., Zhang, J., Fang, D., and Chen, D., Fuel, 2011, vol. 90, no. 5, pp. 1738–1742.CrossRefGoogle Scholar
  90. 90.
    Aboul-Fotouh, S.M.K., J. Fuel Chem. Technol., 2013, vol. 41, no. 9, pp. 1077–1084.CrossRefGoogle Scholar
  91. 91.
    Adkins, H. and Perkins, P.D., J. Phys. Chem., 1928, vol. 32, pp. 221–224.CrossRefGoogle Scholar
  92. 92.
    Zhang, L., Zhang, H.-T., Ying, W.-Y., and Fang, D.-Y., World Acad. Sci., Eng. Technol., 2011, vol. 5, pp. 943–948.Google Scholar
  93. 93.
    Sabour, B., Peyrovi, M.H., Hamoule, T., and Rashidzadeh, M., J. Ind. Eng. Chem., 2014, vol. 20, no. 1, pp. 222–227.CrossRefGoogle Scholar
  94. 94.
    Fu, Y., Hong, T., Chen, J., Auroux, A., and Shen, J., Thermochim. Acta, 2005, vol. 434, nos. 1–2, pp. 22–26.Google Scholar
  95. 95.
    Jun, K.W., Lee, H.S., Roh, H.S., and Park, S.E., Bull. Korean Chem. Soc., 2002, vol. 23, no. 6, pp. 803–806.CrossRefGoogle Scholar
  96. 96.
    Xiu, T., Wang, J., and Liu, Q., Microporous Mesoporous Mater., 2011, vol. 143, nos. 2–3, pp. 362–367.Google Scholar
  97. 97.
    Mao, D., Yang, W., Xia, J., Zhang, B., and Lu, G., J. Mol. Catal. A: Chem., 2006, vol. 250, nos. 1–2, pp. 138–144.Google Scholar
  98. 98.
    Mollavali, M., Yaripour, F., Mohammadi-Jam, S., and Atashi, H., Fuel Process. Technol., 2009, vol. 90, no. 9, pp. 1093–1098.CrossRefGoogle Scholar
  99. 99.
    Yaripour, F., Shariatinia, Z., Sahebdelfar, S., and Irandoukht, A., Fuel, 2015, vol. 139, pp. 40–50.CrossRefGoogle Scholar
  100. 100.
    Bagshaw, S.A. and Pinnavaia, T.J., Angew. Chem., Int. Ed. Engl., 1996, vol. 35, no. 10, pp. 1102–1105.CrossRefGoogle Scholar
  101. 101.
    Yao, N., Xiong, G., Zhang, Y., He, M., and Yang, W., Catal. Today, 2001, vol. 68, nos. 1–3, pp. 97–109.Google Scholar
  102. 102.
    Oikawa, T., Ookoshi, T., Tanaka, T., Yamamoto, T., and Onaka, M., Microporous Mesoporous Mater., 2004, vol. 74, nos. 1–3, pp. 93–103.Google Scholar
  103. 103.
    Delmastro, A., Gozzelino, G., Mazza, D., Vallino, M., Busca, G., and Lorenzelli, V., J. Chem. Soc., Faraday Trans., 1992, vol. 88, no. 14, pp. 2065–2070.CrossRefGoogle Scholar
  104. 104.
    Colorio, G.C., Auroux, A., and Bonnetot, B., J. Therm. Anal., 1993, vol. 40, no. 3, pp. 1267–1276.CrossRefGoogle Scholar
  105. 105.
    Sibeijn, M., Vanveen, J.A.R., Bliek, A., and Moulijn, J.A., J. Catal., 1994, vol. 145, no. 2, pp. 416–428.CrossRefGoogle Scholar
  106. 106.
    Chen, Y.-W. and Li, C., Catal. Lett., 1992, vol. 13, no. 4, pp. 359–361.CrossRefGoogle Scholar
  107. 107.
    Sato, S., Kuroki, M., Sodesawa, T., Nozaki, F., and Maciel, G.E., J. Mol. Catal. A: Chem., 1995, vol. 104, no. 2, pp. 171–177.CrossRefGoogle Scholar
  108. 108.
    Curtin, T., McMonagle, J.B., and Hodnett, B.K., Appl. Catal., A,1992, vol. 93, no. 1, pp. 91–101.Google Scholar
  109. 109.
    Schüth, F., Chem. Mater., 2001, vol. 13, no. 10, pp. 3184–3195.CrossRefGoogle Scholar
  110. 110.
    Tian, B., Liu, X., Tu, B., Yu, C., Fan, J., Wang, L., Xie, S., Stucky, G.D., and Zhao, D., Nat. Mater., 2003, vol. 2, no. 3, pp. 159–163.CrossRefPubMedGoogle Scholar
  111. 111.
    Huang, C., Jiang, Z., and Hu, B., Talanta, 2007, vol. 73, no. 2, pp. 274–281.CrossRefPubMedGoogle Scholar
  112. 112.
    Taguchi, A. and Schüth, F., Microporous Mesoporous Mater., 2005, vol. 77, no. 1, pp. 1–45.CrossRefGoogle Scholar
  113. 113.
    Sung, D.M., Kim, Y.H., Park, E.D., and Yie, J.E., Res. Chem. Intermed., 2010, vol. 36, nos. 6–7, pp. 653–660.Google Scholar
  114. 114.
    US Patent 1914722, 1933.Google Scholar
  115. 115.
    Royaee, S.J., Sohrabi, M., and Falamaki, C., Mater. Sci.-Pol., 2007, vol. 25, no. 4, pp. 1149–1160.Google Scholar
  116. 116.
    Khoshbin, R. and Haghighi, M., Chem. Eng. Res. Des., 2013, vol. 91, no. 6, pp. 1111–1122.CrossRefGoogle Scholar
  117. 117.
    Bandiera, J. and Naccache, C., Appl. Catal., 1991, vol. 69, no. 1, pp. 139–148.CrossRefGoogle Scholar
  118. 118.
    Mirodatos, D. and Barthomeuf, J. Chem. Soc., Chem. Commun., 1981, no. 2, pp. 39–40.Google Scholar
  119. 119.
    Montesano Lopez, R., Selectivity and deactivation in the single-stage synthesis of dimethyl ether from CO2/CO/H2, PhD Thesis, London: Imperial College, 2014.Google Scholar
  120. 120.
    Catizzone, E., Aloise, A., Migliori, M., and Giordano, G., Appl. Catal., A, 2015, vol. 502, pp. 215–220.Google Scholar
  121. 121.
    Khandan, N., Kazemeini, M., and Aghaziarati, M., Appl. Catal., A, 2008, vol. 349, nos. 1–2, pp. 6–12.Google Scholar
  122. 122.
    Hassanpour, S., Yaripour, F., and Taghizadeh, M., Fuel Process. Technol., 2010, vol. 91, no. 10, pp. 1212–1221.CrossRefGoogle Scholar
  123. 123.
    Moradi, G.R., Yaripour, F., and Vale-Sheyda, P., Fuel Process. Technol., 2010, vol. 91, no. 5, pp. 461–468.CrossRefGoogle Scholar
  124. 124.
    Zheng, J., Ma, J., Wang, Y., Bai, Y., Zhang, X., and Li, R., Catal. Lett., 2009, vol. 130, nos. 3–4, pp. 672–678.Google Scholar
  125. 125.
    Wang, Y., Wang, W.-L., Chen, Y.-X., Zheng, J.-J., and Li, R.-F., J. Fuel Chem. Technol., 2013, vol. 41, no. 7, pp. 873–880.CrossRefGoogle Scholar
  126. 126.
    Fei, J., Hou, Z., Zhu, B., Lou, H., and Zheng, X., Appl. Catal., A, 2006, vol. 304, pp. 49–54.Google Scholar
  127. 127.
    Jin, D., Zhu, B., Hou, Z., Fei, J., Lou, H., and Zheng, X., Fuel, 2007, vol. 86, nos. 17–18, pp. 2707–2713.Google Scholar
  128. 128.
    Aboul-Fotouh, S.M.K., Aboul-Gheit, N.A.K., and Hassan, M.M.I., Chin. J. Catal., 2011, vol. 32, nos. 3–4, pp. 412–417.Google Scholar
  129. 129.
    Aboul-Fotouh, S.M.K., Aboul-Gheit, N.A.K., and Naghmash, M.A., J. Fuel Chem. Technol., 2016, vol. 44, no. 4, pp. 428–436.CrossRefGoogle Scholar
  130. 130.
    Seo, C.W., Jung, K.D., Lee, K.Y., and Yoo, K.S., J. Ind. Eng. Chem., 2009, vol. 15, no. 5, pp. 649–652.CrossRefGoogle Scholar
  131. 131.
    Mao, D., Xia, J., Zhang, B., and Lu, G., Energy Convers. Manage., 2010, vol. 51, no. 6, pp. 1134–1139.CrossRefGoogle Scholar
  132. 132.
    Espinoza, R., Stander, C., and Mandersloot, W., Appl. Catal., 1983, vol. 6, no. 1, pp. 11–26.CrossRefGoogle Scholar
  133. 133.
    Parera, J.M. and Figoli, N.S., J. Catal., 1969, vol. 14, no. 4, pp. 303–310.CrossRefGoogle Scholar
  134. 134.
    Zhu, Q., Kondo, J.N., Ohnuma, R., Kubota, Y., Yamaguchi, M., and Tatsumi, T., Microporous Mesoporous Mater., 2008, vol. 112, nos. 1–3, pp. 153–161.Google Scholar
  135. 135.
    Pines, H. and Haag, W.O., J. Am. Chem. Soc., 1960, vol. 82, no. 10, pp. 2471–2483.CrossRefGoogle Scholar
  136. 136.
    Haag, W.O. and Pines, H., J. Am. Chem. Soc., 1960, vol. 82, no. 10, pp. 2488–2494.CrossRefGoogle Scholar
  137. 137.
    Parera, J.M., Hillar, S.A., Vincenzini, J.C., and Figoli, N.S., J. Catal., 1971, vol. 21, no. 1, pp. 70–77.CrossRefGoogle Scholar
  138. 138.
    Bakshi, K.R. and Gavalas, G.R., AIChE J., 1975, vol. 21, no. 3, pp. 494–500.CrossRefGoogle Scholar
  139. 139.
    Takeguchi, T., Yanagisawa, K.-I., Inui, T., and Inoue, M., Appl. Catal., A, 2000, vol. 192, no. 2, pp. 201–209.Google Scholar
  140. 140.
    Alba, M.D., Romero, A.A., Occelli, M.L., and Klinowski, J., J. Chem. Soc., Faraday Trans., 1997, vol. 93, no. 6, pp. 1221–1224.CrossRefGoogle Scholar
  141. 141.
    Varişli, D., Tokay, K.C., Cİftçİ, A., Doğu, T., and Doğu, G., Turk. J. Chem., 2009, vol. 33, no. 3, pp. 355–366.Google Scholar
  142. 142.
    Laghaei, M., Sadeghi, M., Ghalei, B., and Dinari, M., Prog. Org. Coat., 2016, vol. 90, pp. 163–170.CrossRefGoogle Scholar
  143. 143.
    Laghaei, M., Sadeghi, M., Ghalei, B., and Shahrooz, M., J. Membr. Sci., 2016, vol. 513, pp. 20–32.CrossRefGoogle Scholar
  144. 144.
    Herman, R.G., Khouri, F.H., Klier, K., Higgins, J.B., Galler, M.R., and Terenna, C.R., J. Catal., 2004, vol. 228, no. 2, pp. 347–361.CrossRefGoogle Scholar
  145. 145.
    Meynen, V., Cool, P., and Vansant, E.F., Microporous Mesoporous Mater., 2009, vol. 125, no. 3, pp. 170–223.CrossRefGoogle Scholar
  146. 146.
    Tang, Q., Xu, H., Zheng, Y., Wang, J., Li, H., and Zhang, J., Appl. Catal., A, 2012, vols. 413–414, pp. 36–42.Google Scholar
  147. 147.
    Li, H., He, S., Ma, K., Wu, Q., Jiao, Q., and Sun, K., Appl. Catal., A, 2013, vol. 450, pp. 152–159.Google Scholar
  148. 148.
    Ciftci, A., Varisli, D., Tokay, K.C., Sezgi, N.A., and Dogu, T., Chem. Eng. J., 2012, vols. 207–208, pp. 85–93.Google Scholar
  149. 149.
    Rutkowska, M., Macina, D., Mirocha-Kubień, N., Piwowarska, Z., and Chmielarz, L., Appl. Catal., B, 2015, vols. 174–175, pp. 336–343.Google Scholar
  150. 150.
    Macina, D., Piwowarska, Z., Tarach, K., Góra-Marek, K., Ryczkowski, J., and Chmielarz, L., Mater. Res. Bull., 2016, vol. 74, pp. 425–435.CrossRefGoogle Scholar
  151. 151.
    Azimov, F., Markova, I., Stefanova, V., and Sharipov, Kh., J. Univ. Chem. Technol. Metall., 2012, vol. 47, no. 3, pp. 333–340.Google Scholar
  152. 152.
    Naik, S.P., Bui, V., Ryu, T., Miller, J.D., and Zmierczak, W., Appl. Catal., A, 2010, vol. 381, nos. 1–2, pp. 183–190.Google Scholar
  153. 153.
    Rashidi, H., Hamoule, T., Khosravi-Nikou, M.R., and Shariati, A., Iran. J. Oil Gas Sci. Technol., 2013, vol. 2, no. 4, pp. 67–73.Google Scholar
  154. 154.
    Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Science, 1998, vol. 279, no. 5350, pp. 548–552.CrossRefPubMedGoogle Scholar
  155. 155.
    Xu, B., Li, H., Hua, W., Yue, Y., and Gao, Z., Microporous Mesoporous Mater., 2006, vol. 88, nos. 1–3, pp. 191–196.Google Scholar
  156. 156.
    Liu, Y., Zhang, W., and Pinnavaia, T.J., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, no. 7, pp. 1255–1258.CrossRefGoogle Scholar
  157. 157.
    Wang, J., Hua, W., Yue, Y., and Gao, Z., Bioresour. Technol., 2010, vol. 101, no. 19, pp. 7224–7230.CrossRefPubMedGoogle Scholar
  158. 158.
    Moffat, J.B., Vetrivel, R., and Viswanathan, B., J. Mol. Catal., 1985, vol. 30, nos. 1–2, pp. 171–180.Google Scholar
  159. 159.
    Kikhtyanin, O.V., Mastikhin, V.M., and Ione, K.G., Appl. Catal., 1988, vol. 42, no. 1, pp. 1–13.CrossRefGoogle Scholar
  160. 160.
    Lok, B.M., Messina, C.A., Patton, R.L., Gajek, R.T., Cannan, T.R., and Flanigen, E.M., J. Am. Chem. Soc., 1984, vol. 106, no. 20, pp. 6092–6093.CrossRefGoogle Scholar
  161. 161.
    US Patent 4440871, 1984.Google Scholar
  162. 162.
    Campelo, J.M., Lafont, F., Marinas, J.M., and Ojeda, M., Appl. Catal., A, 2000, vol. 192, no. 1, pp. 85–96.Google Scholar
  163. 163.
    Chen, D., Gronvold, A., Moljord, K., and Holmen, A., Ind. Eng. Chem. Res., 2007, vol. 46, no. 12, pp. 4116–4123.CrossRefGoogle Scholar
  164. 164.
    Charghand, M., Haghighi, M., and Aghamohammadi, S., Ultrason. Sonochem., 2014, vol. 21, no. 5, pp. 1827–1838.CrossRefPubMedGoogle Scholar
  165. 165.
    Sedighi, M. and Towfighi, J., Fuel, 2015, vol. 153, pp. 382–392.CrossRefGoogle Scholar
  166. 166.
    Bennett, J.M., Cohen, J.P., Flanigen, E.M., Pluth, J.J., and Smith, J.V., ACS Symp. Ser., 1983, vol. 218, pp. 109–118.CrossRefGoogle Scholar
  167. 167.
    Chen, J., Wright, P.A., Natarajan, S., and Thomas, J.M., Stud. Surf. Sci. Catal., 1994, vol. 84, pp. 1731–1738.CrossRefGoogle Scholar
  168. 168.
    Barthomeuf, D., Appl. Spectrosc., 1994, vol. 14, no. 6, pp. 394–401.Google Scholar
  169. 169.
    Pinkaew, K., Yang, G., Vitidsant, T., Jin, Y., Zeng, C., Yoneyama, Y., and Tsubaki, N., Fuel, 2013, vol. 111, pp. 727–732.CrossRefGoogle Scholar
  170. 170.
    Lee, K.-Y. and Misono, M., in Handbook of Heterogeneous Catalysis, Ertl, G., Knözinger, H., Schüth, F., and Weitkamp, J., Eds., Weinheim: Wiley-VCH, 2008, ch. 2.3.13, pp. 318–341.Google Scholar
  171. 171.
    Misono, M., Okuhara, T., Ichiki, T., Arai, T., and Kanda, Y., J. Am. Chem. Soc., 1987, vol. 109, no. 18, pp. 5535–5536.CrossRefGoogle Scholar
  172. 172.
    Vázquez, P., Pizzio, L., Cáceres, C., Blanco, M., Thomas, H., Alesso, E., Finkielsztein, L., Lantaño, B., Moltrasio, G., and Aguirre, J., J. Mol. Catal. A: Chem., 2000, vol. 161, nos. 1–2, pp. 223–232.Google Scholar
  173. 173.
    EP Patent 1992601, 2008.Google Scholar
  174. 174.
    Ciftci, A., Varisli, D., and Dogu, T., Int. J. Chem. React. Eng., 2010, vol. 8, no. 1.  https://doi.org/10.2202/1542-6580.2151
  175. 175.
    Ivanova, S., Nitsch, X., Romero-Sarria, F., Louis, B., Centeno, M.A., Roger, A.C., and Odriozola, J.A., Stud. Sur. Sci. Catal., 2010, vol. 175, pp. 601–604.CrossRefGoogle Scholar
  176. 176.
    Ivanova, S., Nitsch, X., Romero-Sarria, F., Louis, B., Centeno, M.A., Roger, A.C., and Odriozola, J.A., Catal. Today, 2011, vol. 171, pp. 236–241.CrossRefGoogle Scholar
  177. 177.
    Anwar, A., Abdel-Ghaffar, A., Aboul-Fotouh, S., and Fikry, E., Collect. Czech. Chem. Commun., 1994, vol. 59, no. 4, pp. 820–832.CrossRefGoogle Scholar
  178. 178.
    Hensel, J. and Pines, H., J. Catal., 1972, vol. 24, no. 2, pp. 197–205.CrossRefGoogle Scholar
  179. 179.
    Ryndin, Y.A., Hicks, R.F., Bell, A.T., and Yermakov, Y.I., J. Catal., 1981, vol. 70, no. 2, pp. 287–297.CrossRefGoogle Scholar
  180. 180.
    Hicks, R., Yen, Q.-J., and Bell, A., Abstracts of Papers, Proc. Int. Conf. Coal Sci., Pittsburg, PA, 1983, pp. 227–228.Google Scholar
  181. 181.
    Licht, E., Schächter, Y., and Pines, H., J. Catal., 1978, vol. 55, no. 2, pp. 191–197.CrossRefGoogle Scholar
  182. 182.
    Pines, H. and Kobylinski, T.P., J. Catal., 1970, vol. 17, no. 3, pp. 375–383.CrossRefGoogle Scholar
  183. 183.
    Pines, H., Hensel, J., and Sǐmonik, J., J. Catal., 1972, vol. 24, no. 2, pp. 206–210.CrossRefGoogle Scholar
  184. 184.
    Xu, M., Goodman, D.W., and Bhattacharyya, A., Appl. Catal., A, 1997, vol. 149, no. 2, pp. 303–309.Google Scholar
  185. 185.
    Narasimhan, C.S. and Swamy, C.S., Curr. Sci., 1976, vol. 45, no. 21, pp. 759–760.Google Scholar
  186. 186.
    Narasimhan, C.S. and Swamy, C.S., Appl. Catal., 1982, vol. 2, nos. 4–5, pp. 315–328.Google Scholar
  187. 187.
    Chakrabarty, D.K., Guha, D., Bhatnagar, I.K., and Biswas, A.B., J. Catal., 1976, vol. 45, no. 3, pp. 305–309.CrossRefGoogle Scholar
  188. 188.
    Imai, H. and Nakamura, K., J. Catal., 1990, vol. 125, no. 2, pp. 571–573.CrossRefGoogle Scholar
  189. 189.
    Vishwanathan, V., Roh, H.-S., Kim, J.-W., and Jun, K.-W., Catal. Lett., 2004, vol. 96, nos. 1–2, pp. 23–28.Google Scholar
  190. 190.
    Ziolek, M., Catal. Today, 2003, vol. 78, nos. 1–4, pp. 47–64.Google Scholar
  191. 191.
    Tanabe, K., Catal. Today, 2003, vol. 78, nos. 1–4, pp. 65–77.Google Scholar
  192. 192.
    Sun, Q., Fu., Y., Yang, H., Auroux, A., and Shen, J., J. Mol. Catal. A: Chem., 2007, vol. 275, nos. 1–2, pp. 183–193.Google Scholar
  193. 193.
    Armaroli, T., Busca, G., Carlini, C., Giuttari, M., Galletti, A.M.R., and Sbrana, G., J. Mol. Catal. A: Chem., 2000, vol. 151, nos. 1–2, pp. 233–243.Google Scholar
  194. 194.
    Ladera, R., Finocchio, E., Rojas, S., Fierro, J.L.G., and Ojeda, M., Catal. Today, 2012, vol. 192, no. 1, pp. 136–143.CrossRefGoogle Scholar
  195. 195.
    Harmer, M.A. and Sun, Q., Appl. Catal., A, 2001, vol. 221, nos. 1–2, pp. 45–62.Google Scholar
  196. 196.
    Gates, B.C. and Johanson, L.N., AIChE J., 1971, vol. 17, no. 4, pp. 981–983.CrossRefGoogle Scholar
  197. 197.
    Gates, B.C. and Johanson, L.N., J. Catal., 1969, vol. 14, no. 1, pp. 69–76.CrossRefGoogle Scholar
  198. 198.
    Kabel, R.L. and Johanson, L.N., AIChE J., 1962, vol. 8, no. 5, pp. 621–628.CrossRefGoogle Scholar
  199. 199.
    Kiviranta-Pääkkönen, P.K., Struckmann, L.K., Linnekoski, J.A., and Krause, A.O.I., Ind. Eng. Chem. Res., 1998, vol. 37, no. 1, pp. 18–24.CrossRefGoogle Scholar
  200. 200.
    Varışlı, D. and Doğu, T., Gazi Univ. J. Sci., 2008, vol. 21, no. 2, pp. 37–41.Google Scholar
  201. 201.
    Kipnis, M.A., Samokhin, P.V., Bondarenko, G.N., Volnina, E.A., Kostina, Y.V., Yashina, O.V., Barabanov, V.G., and Kornilov, V.V., Russ. J. Phys. Chem. A, 2011, vol. 85, no. 8, pp. 1322–1331.CrossRefGoogle Scholar
  202. 202.
    Shechtman, D., Blech, I., Gratias, D., and Cahn, J.W., Phys. Rev. Lett., 1984, vol. 53, no. 20, pp. 1951–1953.CrossRefGoogle Scholar
  203. 203.
    Munro, R., in A Century of Excellence in Measurements, Standards, and Technology, Lide, D.R., Ed., Washington, DC: CRC Press. 2001, pp. 300–302.Google Scholar
  204. 204.
    Huttunen-Saarivirta, E., J. Alloys Compd., 2004, vol. 363, nos. 1–2, pp. 154–178.Google Scholar
  205. 205.
    Tsai, A.P. and Yoshimura, M., Appl. Catal., A, 2001, vol. 214, no. 2, pp. 237–241.Google Scholar
  206. 206.
    Tsai, A.-P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys., 1987, vol. 26, pp. L1505–L1507.CrossRefGoogle Scholar
  207. 207.
    Jamshidi, L.C.L.A., Barbosa, C.M.B.M., Nascimento, L., and Rodbari, J.R., J. Chem. Eng. Process Technol., 2013, vol. 4, no. 5.  https://doi.org/10.4172/2157-7048.1000164

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemical and Biological Engineering, Iowa State UniversityAmes, IowaUnited States of America
  2. 2.Department of Chemical and Biomolecular Engineering, Ohio UniversityAthens, OhioUnited States of America

Personalised recommendations