Advertisement

Catalysis in Industry

, Volume 10, Issue 4, pp 263–269 | Cite as

Catalytic Activity of Amberlyst A-21 in the Disproportionation of Trichlorosilane at Critical Temperatures

  • A. V. Vorotyntsev
  • A. N. Petukhov
  • E. N. Razov
  • D. A. Makarov
  • V. M. VorotyntsevEmail author
GENERAL PROBLEMS OF CATALYSIS
  • 3 Downloads

Abstract

The catalytic properties of Amberlyst A-21 anion-exchange resin in the gas-phase disproportionation reaction of trichlorosilane (TCS) at temperatures (up to 423 K) critical for the resin are investigated for the first time. It is established using thermal desorprtion followed by pyrolysis that Amberlyst A-21 undergoes thermal destruction to form chloromethane and the spherical polymer matrix decomposes at above 423 K. In the temperature range of 333–423 K, the apparent activation energy of disproportionation of TCS with using Amberlyst A-21 is 37.12 kJ/mol and the reaction rate constant is 0.80 s−1 (at 423 K). Three months of testing of the resin in disproportionation of TCS at 423 K demonstrates its stable catalytic activity.

Keywords:

heterogeneous catalysis Amberlyst A-21 disproportionation trichlorosilane silicon tetrachloride monosilanee 

Notes

ACKNOWLEDGMENTS

This work was supported by Russian Foundation for Basic Research, project no. 16-38-60192 mol_a_dk. The samples were characterized with the support of the RF Ministry of Education and Science as part of a State Task, project no. 11/17-01.10.

REFERENCES

  1. 1.
    Ahn, S.H., Chun, D.M., and Chu, W.S., Int. J. Precis. Eng. Manuf., 2013, vol. 14, no. 6, pp. 873–874.CrossRefGoogle Scholar
  2. 2.
    Shah, A.V., Meier, J., Vallat-Sauvain, E., Wyrsch, N., Kroll, U., Droz, C., and Graf, U., Sol. Energy Mater. Sol. Cells, 2003, vol. 78, nos. 1–4, pp. 469–491.Google Scholar
  3. 3.
    Handbook of Semiconductor Manufacturing Technology, Nishi, Y. and Doering, R., Eds., Boca Raton, FL: CRC Press, 2007.Google Scholar
  4. 4.
    Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett., 1990, vol. 64, no. 16, pp. 1943–1947.CrossRefGoogle Scholar
  5. 5.
    Chu, S. and Majumdar, A., Nature, 2012, vol. 488, no. 7411, pp. 294–303.CrossRefGoogle Scholar
  6. 6.
    Bathey, B.R. and Cretella, M.C., J. Mater. Sci., 2005, vol. 17, no. 11, pp. 3877–3896.Google Scholar
  7. 7.
    Handbook of Semiconductor Silicon Technology, O’Mara, W.C., Herring, R.B., and Hunt, L.P., Eds., New Jersey: Noyes Publications, 1990.Google Scholar
  8. 8.
    Green, M.A., Sol. Energy, 2004, vol. 76, nos. 1–3, pp. 3–8.Google Scholar
  9. 9.
    Duchemin, M.J.-P., Bonnet, M.M. and Koelsch, M.F., J. Electrochem. Soc., 1978, vol. 125, no. 4, pp. 637–644.CrossRefGoogle Scholar
  10. 10.
    Handbook of Photovoltaic Science and Engineering, Luque, A. and Hegedus, S., Eds., New York: Wiley, 2011.Google Scholar
  11. 11.
    US Patent 3963838, 1976.Google Scholar
  12. 12.
    Iya, S.K., Flagella, R.N., and Dipaolo, F.S., J. Electrochem. Soc., 1982, vol. 129, pp. 1531–1535.CrossRefGoogle Scholar
  13. 13.
    WO Patent 1996/041036, 1997.Google Scholar
  14. 14.
    Yasuda, K. and Okabe, T.H., J. Jpn. Inst. Met., 2010, vol. 74, pp. 1–9.CrossRefGoogle Scholar
  15. 15.
    Hou, Y.Q., Xie, G., Nie, Z.F., and Li, N., Adv. Mater. Res., 2014, vols. 881–883, pp. 1805–1808.Google Scholar
  16. 16.
    Liu, S.-S., and Xiao, W.-D., Chem. Eng. Sci., 2015, vol. 127, pp. 84–94.CrossRefGoogle Scholar
  17. 17.
    Union Carbide Corporation Final Report, Springfield, VA: National Technical Information Center, 1981, DOE/JPL contract no. 954334.Google Scholar
  18. 18.
    RF Patent 2152902, 2000.Google Scholar
  19. 19.
    Mehler, M., Electron. News., 1984, vol. 30, no. 1485, p. 54.Google Scholar
  20. 20.
    Iya, J., J. Cryst. Growth, 1986, vol. 75, no. 1, pp. 88–90.CrossRefGoogle Scholar
  21. 21.
    Vorotyntsev, V.M., Mochalov, G.M., and Nipruk, O.V., Russ. J. Appl. Chem., 2001, vol. 74, no. 4, pp. 621–625.CrossRefGoogle Scholar
  22. 22.
    US Patent 4 704 264, 1987.Google Scholar
  23. 23.
    US Patent 4 667 048, 1987.Google Scholar
  24. 24.
    US Patent 4 395 389, 2017.Google Scholar
  25. 25.
    Vorotyntsev, A.V., Zelentsov, S.V., and Vorotyntsev, V.M., Russ. Chem. Bull., 2011, vol. 60, no. 8, pp. 1531–1536.CrossRefGoogle Scholar
  26. 26.
    Vorotyntsev, A.V., Mochalov, G.M., and Vorotyntsev, V.M., Inorg. Mater., 2013, vol. 48, no. 1, pp. 1–5.CrossRefGoogle Scholar
  27. 27.
    Vorotyntsev, A.V., Petukhov, A.N., Vorotyntsev, I.V., Sazanova, T.S., Trubyanov, M.M., Kopersak, I.Y., Razov, E.N., and Vorotyntsev, V.M., Appl. Catal., B, 2016, vol. 198, pp. 334–346.CrossRefGoogle Scholar
  28. 28.
    Rossi, J.A., Willardson, R.K., Weber, E.R., and Rode, D.L., in Silicon Epitaxy, Semiconductors and Semimetals, San Diego, CA: Academic Press, 2001.Google Scholar
  29. 29.
    Lynch, D., Ben, W., and Ji, X., in 140th Annual Meeting and Exhibition, vol. 1: Materials Processing and Energy Materials, New York: Wiley, 2011, pp. 685–692.Google Scholar
  30. 30.
    Kornev, R.A., Vorotyntsev, V.M., Petukhov, A.N., Razov, E.N., Mochalov, L.A., Trubyanov, M.M., and Vorotyntsev, A.V., RSC Adv., 2016, vol. 6, no. 102, pp. 99816–99824.CrossRefGoogle Scholar
  31. 31.
    Mansfeld, D.A., Vodopyanov, A.V., Golubev, S.V., Sennikov, P.G., Mochalov, L.A., Andreev, B.A., Drozdov, Yu.N., Drozdov, M.N., Shashkin, V.I., Bulkin, P., and Roca i Cabarrocas, P., Thin Solid Films, 2014, vol. 562, pp. 114–117.CrossRefGoogle Scholar
  32. 32.
    Bruno, G., Capezzuto, P., Cicala, G., and Cramarossa, F., Plasma Chem. Plasma Process., 1986, vol. 6, no. 2, pp. 109–125.CrossRefGoogle Scholar
  33. 33.
    Platz, R. and Wagner, S., Appl. Phys. Lett., 1998, vol. 73, pp. 1236–1238.CrossRefGoogle Scholar
  34. 34.
    Mochalov, L.A., Kornev, R.A., Nezhdanov, A.V., Mashin, A.I., Lobanov, A.S., Kostrov, A.V., Vorotyntsev, V.M., and Vorotyntsev, A.V., Plasma Chem. Plasma Process., 2016, vol. 36, no. 3, pp. 849–856.CrossRefGoogle Scholar
  35. 35.
    US Patent 2627451, 1956.Google Scholar
  36. 36.
    Vorotyntsev, A.V., Zelentsov, S.V., Vorotyntsev, V.M., Petukhov, A.N., and Kadomtseva, A.V., Russ. Chem. Bull., 2015, vol. 64, no. 4, pp. 759–765.CrossRefGoogle Scholar
  37. 37.
    US Patent 2 732 280, 1956.Google Scholar
  38. 38.
    US Patent 2 834 648, 1958.Google Scholar
  39. 39.
    US Patent 4 605 543, 1986.Google Scholar
  40. 40.
    Zagorodni, A.A., Ion Exchange Materials: Properties and Applications, Amsterdam: Elsevier, 2007.CrossRefGoogle Scholar
  41. 41.
    US Patent 3 968 199, 1976.Google Scholar
  42. 42.
    US Patent 4 340 574, 1982.Google Scholar
  43. 43.
    US Patent 4 613 489, 1986.Google Scholar
  44. 44.
    US Patent 4 548 917, 1985.Google Scholar
  45. 45.
    DE Patent 2 162 537, 1972.Google Scholar
  46. 46.
    Huang, X., Ding, W.-J., Yan, J.-M., and Xia, W.-D., Ind. Eng. Chem. Res., 2013, vol. 52, no. 18, pp. 6211–6220.CrossRefGoogle Scholar
  47. 47.
    Alcántara-Avila, J.R., Sillas-Delgado, H.A., Segovia-Hernández, J.G., Gómez-Castro, F.I., and Cervantes-Jauregui, J.A., Comput. Chem. Eng., 2015, vol. 78, pp. 85–93.CrossRefGoogle Scholar
  48. 48.
    Devyatykh, G.G., Panov, G.I., and Kharitonov, A.S., J. Inorg. Chem., 1987, vol. 32, no. 4, pp. 1002–1005.Google Scholar
  49. 49.
    Vorotyntsev, V.M., Balabanov, V.V., and Shamrakov, D.A., High-Purity Subst., 1987, vol. 3, pp. 74–78.Google Scholar
  50. 50.
    Grishnova, N.D., Gusev, A.V., Moiseev, A.N., Mochalov, G.M., Balanovskii, N.V., and Kharina, T.P., Russ. J. Appl. Chem., 1999, vol. 72, no. 10, pp. 1761–1766.Google Scholar
  51. 51.
    Vorotyntsev, A.V., Petukhov, A.N., Makarov, D.A., Razov, E.N., Vorotyntsev, I.V., Nyuchev, A.V., Kirillova, N.I., and Vorotyntsev, V.M., Appl. Catal., B, 2018, vol. 224, pp. 621–633.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Vorotyntsev
    • 1
  • A. N. Petukhov
    • 1
  • E. N. Razov
    • 2
  • D. A. Makarov
    • 1
  • V. M. Vorotyntsev
    • 1
    Email author
  1. 1.Alekseev Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia
  2. 2.Institute of Machine Building Problems, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations