Advertisement

Catalysis in Industry

, Volume 10, Issue 4, pp 301–312 | Cite as

The Use of the Ru-Containing Catalyst Based on Hypercrosslinked Polystyrene in the Hydrogenation of Levulinic Acid to γ-Valerolactone

  • I. I. ProtsenkoEmail author
  • D. A. AbusuekEmail author
  • L. Zh. NikoshviliEmail author
  • A. V. BykovEmail author
  • V. G. MatveevaEmail author
  • E. M. SulmanEmail author
CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • 5 Downloads

Abstract

RuO2 particles stabilized in a polymeric matrix of hypercrosslinked polystyrene of MN100 type (5% Ru/MN100) are characterized by physicochemical methods (low-temperature nitrogen adsorption, transmission and scanning electron microscopy, X-ray photoelectron spectroscopy, and diffuse reflectance infrared Fourier transform spectroscopy), and the catalytic activity of these particles is studied in the reaction of selective hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL). It is shown that synthesized catalyst 5% Ru/MN100 ensures a GVL yield above 99% under mild reaction conditions (90°C; hydrogen partial pressure, 2 MPa) in an aqueous medium and can compete with commercial catalyst 5% Ru/C.

Keywords:

γ-valerolactone levulinic acid catalytic hydrogenation ruthenium hypercrosslinked polystyrene 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 15-08-01469).

The authors thank L. M. Bronstein (Department of Chemistry, Indiana University, Bloomington, Indiana, USA) and B.D. Stein (Department of Biology, Indiana University, Bloomington, Indiana, USA) for their help in performing TEM studies. We also thank A.S. Morozov and I.V. Bessonov (AO Perspektivnye meditsinskie tekhnologii) for their assistance in conducting SEM studies at the Laboratory of Chemical Synthesis, Composite Materials Interdisciplinary Engineering Center, Bauman State Technical University, Moscow, Russia.

REFERENCES

  1. 1.
    Kuwahara, Y., Kaburagi, W., Osada, Y., Fujitani, T., and Yamashita, H., Catal. Today, 2017, vol. 281, part 3, pp. 418–428.CrossRefGoogle Scholar
  2. 2.
    Jiang, K., Sheng, D., Zhang, Z., Fu, J., Hou, Z., and Lu, X., Catal. Today, 2016, vol. 274, pp. 55–59.CrossRefGoogle Scholar
  3. 3.
    Putrakumar, B., Nagaraju, N., Kumar, V.P., and Chary, K.V.R., Catal. Today, 2015, vol. 250, pp. 209–217.CrossRefGoogle Scholar
  4. 4.
    Negahdar, L., Al-Shaal, M.G., Holzhäuser, F.J., and Palkovits, R., Chem. Eng. Sci., 2017, vol. 158, pp. 545–551.CrossRefGoogle Scholar
  5. 5.
    Kuwahara, Y., Magatani, Y., and Yamashita, H., Catal. Today, 2015, vol. 258, part 2, pp. 262–269.CrossRefGoogle Scholar
  6. 6.
    Gao, H. and Chen, J., J. Organomet. Chem., 2015, vol. 797, pp. 165–170.CrossRefGoogle Scholar
  7. 7.
    Al-Naji, M., Yepez, A., Balu, A.M., Romero, A.A., Chen, Z., Wilde, N., Li, H., Shih, K., Gläser, R., and Luqueb, R., J. Mol. Catal. A: Chem., 2016, vol. 417, pp. 145–152.CrossRefGoogle Scholar
  8. 8.
    Wąchała, M., Grams, J., Kwapiński, W., and Ruppert, A.M., Int. J. Hydrogen Energy, 2016, vol. 41, no. 20, pp. 8688–8695.CrossRefGoogle Scholar
  9. 9.
    Yao, Y., Wang, Z., Zhao, S., Wang, D., Wu, Z., and Zhang, M., Catal. Today, 2014, vol. 234, pp. 245–250.CrossRefGoogle Scholar
  10. 10.
    Serrano-Ruiz, J.C., West, R.M., and Dumesic, J.A., Annu. Rev. Chem. Biomol. Eng., 2010, vol. 1, pp. 79–100.CrossRefGoogle Scholar
  11. 11.
    Gürbüz, E.I., Alonso, D.M., Bond, J.Q., and Dumesic, J.A., ChemSusChem, 2011, vol. 4, no. 3, pp. 357–361.CrossRefGoogle Scholar
  12. 12.
    Piskun, A.S., van de Bovenkamp, H.H., Rasrendra, C.B., Winkelman, J.G.M., and Heeres, H.J., Appl. Catal., A, 2016, vol. 525, pp. 158–167.Google Scholar
  13. 13.
    Cao, S., Monnier, J.R., Williams, C.T., Diao, W., and Regalbuto, J.R., J. Catal., 2015, vol. 326, pp. 69–81.CrossRefGoogle Scholar
  14. 14.
    Al-Shaal, M.G., Calin, M., Delidovich, I., and Palkovits, R., Catal. Commun., 2016, vol. 75, pp. 65–68.CrossRefGoogle Scholar
  15. 15.
    Long, X., Sun, P., Li, Z., Lang, R., Xia, C., and Li, F., Chin. J. Catal., 2015, vol. 36, no. 9, pp. 1512–1518.CrossRefGoogle Scholar
  16. 16.
    Testa, M.L., Corbel-Demailly, L., La Parola, V., Venezia, A.M., and Pinel, C., Catal. Today, 2015, vol. 257, part 2, pp. 291–296.CrossRefGoogle Scholar
  17. 17.
    Hengst, K., Schubert, M., Carvalho, H.W.P., Lu, C., Kleist, W., and Grunwaldt, J.-D., Appl. Catal., A, 2015, vol. 502, pp. 18–26.Google Scholar
  18. 18.
    Kumar, V.V., Naresh, G., Deepa, S., Bhavani, P.G., Nagaraju, M., Sudhakar, M., Chary, K.V.R., Tardio, J., Bhargava, S.K., and Venugopal, A., Appl. Catal., A, 2017, vol. 531, pp. 169–176.Google Scholar
  19. 19.
    Wright, W.R.H. and Palkovits, R., ChemSusChem, 2012, vol. 5, no. 9, pp. 1657–1667.CrossRefGoogle Scholar
  20. 20.
    Abdelrahman, O.A., Heyden, A., and Bond, J.Q., ACS Catal., 2014, vol. 4, no. 4, pp. 1171–1181.CrossRefGoogle Scholar
  21. 21.
    Xiao, C., Goh, T.-W., Qi, Z., Goes, Sh., Brashler, K., Perez, C., and Huang, W., ACS Catal., 2016, vol. 6, no. 2, pp. 593–599.CrossRefGoogle Scholar
  22. 22.
    Yan, K., Yang, Y., Chai, J., and Lu, Y., Appl. Catal., 2015, vol. 179, pp. 292–304.CrossRefGoogle Scholar
  23. 23.
    Sudhakar, M., Kantam, M.L., Jaya, V.S., Kishore, R., Ramanujachary, K.V., and Venugopal, A., Catal. Commun., 2014, vol. 50, pp. 101–104.CrossRefGoogle Scholar
  24. 24.
    Tang, X., Zeng, X., Li, Z., Hu, L., Sun, Y., Liu, S., Lei, T., and Lin, L., Renewable Sustainable Energy Rev., 2014, vol. 40, pp. 608–620.CrossRefGoogle Scholar
  25. 25.
    Lange, J.-P., Price, R., Ayoub, P.M., Louis, J., Petrus, L., Clarke, L., and Gosselink, H., Angew. Chem., 2010, vol. 49, no. 26, pp. 4479–4483.CrossRefGoogle Scholar
  26. 26.
    Choi, S., Song, C.W., Shin, J.H., and Lee, S.Y., Metab. Eng., 2015, vol. 28, pp. 223–239.CrossRefGoogle Scholar
  27. 27.
    Alonso, D.M., Wettstein, S.G., and Dumesic, J.A., Green Chem., 2013, vol. 15, no. 3, pp. 584–595.CrossRefGoogle Scholar
  28. 28.
    Alonso, D.M., Wettstein, S.G., Mellmer, M.A., Gurbuz, E.I., and Dumesic, J.A., Energy Environ. Sci., 2013, vol. 6, no. 1, pp. 76–80.CrossRefGoogle Scholar
  29. 29.
    Sapunov, V.N., Grigoryev, M.Ye., Sulman, E.M., Konyaeva, M.B., and Matveeva, V.G., J. Phys. Chem. A, 2013, vol. 117, no. 20, pp. 4073–4083.CrossRefGoogle Scholar
  30. 30.
    Tsvetkova, I.B., Matveeva, V.G., Doluda, V.Y., Bykov, A.V., Sidorov, A.I., Schennikov, S.V., Sulman, M.G., Valetsky, P.M., Stein, B.D., Chen, C.-H., Sulman, E.M., and Bronstein, L.M., J. Mater. Chem., 2012, vol. 22, no. 13, pp. 6441–6448.CrossRefGoogle Scholar
  31. 31.
    Manaenkov, O.V., Matveeva, V.G., Sulman, E.M., Filatova, A.E., Makeeva, O.Yu., Kislitza, O.V., Sidorov, A.I., Doluda, V.Yu., and Sulman, M.G., Top. Catal., 2014, vol. 57, nos. 14–17, pp. 1476–1482.Google Scholar
  32. 32.
    Matveeva, V.G., Sulman, E.M., Manaenkov, O.V., Filatova, A.E., Kislitza, O.V., Sidorov, A.I., Doluda, V.Yu., and Sulman, M.G., WSEAS Trans. Biol. Biomed., 2015, vol. 12, pp. 51–61.Google Scholar
  33. 33.
    Nemygina, N.A., Nikoshvili, L.Zh., Matveeva, V.G., Sulman, M.G., Sulman, E.M., and Kiwi-Minsker, L., Top. Catal., 2016, vol. 59, nos. 13–14, pp. 1185–1195.Google Scholar
  34. 34.
    Protsenko, I.I., Nikoshvili, L.Zh., Matveeva, V.G., Sulman, E.M., and Rebrov, E., Chem. Eng. Trans., 2016, vol. 52, pp. 679–684.Google Scholar
  35. 35.
    Protsenko, I.I., Nikoshvili, L.Zh., Bykov, A.V., Matveeva, V.G., Sulman, A.M., Sulman, E.M., and Rebrov, E.V., Green Process. Synth., 2017, vol. 6, no. 3, pp. 281–286.Google Scholar
  36. 36.
    Nemygina, N.A., Nikoshvili, L.Zh., Bykov, A.V., Sidorov, A.I., Molchanov, V.P., Sulman, M.G., Tiamina, I.Yu., Stein, B.D., Matveeva, V.G., Sulman, E.M., and Kiwi-Minsker, L., Org. Process Res. Dev., 2016, vol. 20, no. 8., pp. 1453–1460.CrossRefGoogle Scholar
  37. 37.
    Jiao, X., Sokolov, S.V., Tanner, E.E.L., Young, N.P., and Compton, R.G., Phys. Chem. Chem. Phys., 2017, vol. 19, no. 1, pp. 64–68.CrossRefGoogle Scholar
  38. 38.
    Wagner, C.D., Rigs, W.M., Davis, L.E., and Moulder, J.F., Handbook of X-ray Photoelectron Spectroscopy, Muilenberg, G.E., Ed., Eden Prairie, MN: Perkin-Elmer, 1979; NIST X-ray Photoelectron Spectroscopy Database, Version 4.1, Gaithersburg, MD: NIST, 2012.Google Scholar
  39. 39.
    Kim, Y.D., Seitsonen, A.P., Wendt, S., Wang, J., Fan, C., Jacobi, K., Over, H., and Ertl, G., J. Phys. Chem. B, vol. 105, no. 18, pp. 3752–3758.Google Scholar
  40. 40.
    Foelske, A., Barbieri, O., Hahn, M., and Kötz, R., Electrochem. Solid-State Lett., 2006, vol. 9, no. 6, pp. A268–A272.CrossRefGoogle Scholar
  41. 41.
    Ugur, D., Storm, A.J., Verberk, R., Brouwer, J.C., and Sloof, W.G., J. Phys. Chem. C, 2012, vol. 116, no. 51, pp. 26822–26828.CrossRefGoogle Scholar
  42. 42.
    Knapp, M., Crihan, D., Seitsonen, A.P., Lundgren, E., Resta, A., Andersen, J.N., and Over, H., J. Phys. Chem. C, 2007, vol. 111, no. 14, pp. 5363–5373.CrossRefGoogle Scholar
  43. 43.
    Thüne, P., Moodley, P., Scheijen, F., Fredriksson, H., Lancee, R., Kropf, J., Miller, J., and (Hans) Niemantsverdriet, J.W., J. Phys. Chem. C, 2012, vol. 116, no. 13, pp. 7367–7373.CrossRefGoogle Scholar
  44. 44.
    Rachmady, W. and Vannice, M.A., J. Catal., 2000, vol. 192, no. 2, pp. 322–334.CrossRefGoogle Scholar
  45. 45.
    Tike, M.A. and Mahajani, V.V., Can. J. Chem. Eng., 2006, vol. 84, no. 4, pp. 452–458.CrossRefGoogle Scholar
  46. 46.
    Datsevich, L.B. and Muhkortov, D.A., Appl. Catal., A, 2004, vol. 261, no. 2, pp. 143–161.Google Scholar
  47. 47.
    Bruehwiler, A., Semagina, N., Grasemann, M., Renken, A., Kiwi-Minsker, L., Saaler, A., Lehmann, H., Bonrath, W., and Roessler, F., Ind. Eng. Chem. Res., 2008, vol. 47, no. 18, pp. 6862–6869.CrossRefGoogle Scholar
  48. 48.
    Zaera, F., Prog. Surf. Sci., 2001, vol. 69, nos. 1–3, pp. 1–98.Google Scholar
  49. 49.
    Singh, U.K. and Vannice, M.A., Appl. Catal., A, 2001, vol. 213, no. 1, pp. 1–24.Google Scholar
  50. 50.
    Mamun, O., Walker, E., Faheem, M., Bond, J.Q., and Heyden, A., ACS Catal., 2017, vol. 7, no. 1, pp. 215–228.CrossRefGoogle Scholar
  51. 51.
    Anderson, R., Buscall, R., Eldridge, R., Mulvaney, P., and Scales, P., RSC Adv., 2014, vol. 4, no. 60, pp. 31914–31925.CrossRefGoogle Scholar
  52. 52.
    Maris, E.P., Ketchie, W.C., Oleshko, V., and Davis, R.J., J. Phys. Chem. B, 2006, vol. 110, no. 15, pp. 7869–7876.CrossRefGoogle Scholar
  53. 53.
    Hoang, L.C., Menezo, J.C., Montassier, C., and Barbier, J., Bull. Soc. Chim. Fr., 1991, vol. 128, no. 4, pp. 491–495.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Tver State Technical UniversityTverRussia

Personalised recommendations