Catalysis in Industry

, Volume 10, Issue 4, pp 360–367 | Cite as

Optimizing Single-Stage Processes of Microcrystalline Cellulose Production via the Peroxide Delignification of Wood in the Presence of a Titania Catalyst

  • B. N. KuznetsovEmail author
  • I. G. SudakovaEmail author
  • O. V. YatsenkovaEmail author
  • N. V. GaryntsevaEmail author
  • F. RataboulEmail author
  • L. DjakovitchEmail author


The conventional way of producing microcrystalline cellulose (MCC) from wood raw materials is multistage; it is based on integrating the environmentally hazardous processes of pulping and bleaching of cellulose and the acid hydrolysis of the amorphous phase of cellulose. This work describes an improved single-stage catalytic method for the production of MCC from softwood and hardwood that is based on the peroxide delignification of wood in an acetic acid–water medium under mild conditions (100°C, atmospheric pressure) in the presence of an environmentally safe TiO2 solid catalyst. The processes of MCC production via the peroxide catalytic delignification of various wood species are optimized experimentally and mathematically. The following optimum modes for the production of MCC with a yield of 36.3–42.0 wt % of absolutely dry wood, a residual lignin content of ≤1.0 wt %, and a hemicellulose content of ≤ 6.0 wt % are determined: For aspen: 5 wt % H2O2, 25 wt % CH3COOH, and a liquid/wood ratio of 10. For birch: 5 wt % H2O2, 25 wt % CH3COOH, and a liquid/wood ratio of 15. For silver fir: 6 wt % H2O2, 30 wt % CH3COOH, and a liquid/wood ratio of 15. For larch: 6 wt % H2O2, 30 wt % CH3COOH, and a liquid/wood ratio of 15.


wood hardwood softwood delignification hydrogen peroxide acetic acid TiO2 catalyst optimization microcrystalline cellulose yield composition 



This work was supported by a grant from the Russian Science Foundation, project no. 16-13-10326 under the International Scientific Association Biomass between France and Russia.


  1. 1.
    Thoorens, G., Krier, F., Leclercq, B., Carlin, B., and Evrard, B., Int. J. Pharm., 2014, vol. 473, nos. 1–2, pp. 64–72.Google Scholar
  2. 2.
    Ghanbarzadeh, B., Oleyaei, S.A., and Almasi, H., Crit. Rev. Food Sci. Nutr., 2015, vol. 55, no. 12, pp. 1699–1723.CrossRefGoogle Scholar
  3. 3.
    Siró, I. and Plackett, D., Cellulose, 2010, vol. 17, no. 3, pp. 459–494.CrossRefGoogle Scholar
  4. 4.
    Das, K., Ray, D., Bandyopadhyay, N.R., Ghosh, T., Mohanty, A., and Misra, V., Cellulose, 2009, vol. 16, no. 5, pp. 783–793.CrossRefGoogle Scholar
  5. 5.
    Laka, M. and Chernyavskaya, S., BioResources, 2007, vol. 2, no. 4, pp. 583–589.Google Scholar
  6. 6.
    Bochek, A.M., Shevchuk, I.L., and Lavrent’ev, V.N., Russ. J. Appl. Chem., 2003, vol. 76, no. 10, pp. 1679–1682.CrossRefGoogle Scholar
  7. 7.
    Jahan, M.S., Saeed, A., He, Z., and Ni, Y., Cellulose, 2011, vol. 18, no. 2, pp. 451–459.CrossRefGoogle Scholar
  8. 8.
    Johar, N., Ahmad, I., and Dufresne, A., Ind. Crops Prod., 2012, vol. 37, no. 1, pp. 93–99.CrossRefGoogle Scholar
  9. 9.
    Chen, G.-Y., Yu, H.-Y., Zhang, C.-H., Zhou, Y., and Yao, J.-M., J. Nanopart. Res., 2016, vol. 18, no. 2, p. 48.CrossRefGoogle Scholar
  10. 10.
    Okwonna, O.O., Carbohydr. Polym., 2013, vol. 98, no. 1, pp. 721–725.CrossRefGoogle Scholar
  11. 11.
    Thoorens, G., Krier, F., Rozet, E., Carlin, B., and Evrard, B., Int. J. Pharm., 2015, vol. 490, no. 1–2, pp. 47–54.Google Scholar
  12. 12.
    US Patent 5366742, 1994.Google Scholar
  13. 13.
    Ohwoavworhua, F.O. and Adelakun, T.A., Indian J. Pharm. Sci., 2010, vol. 72, no. 3, pp. 295–301.CrossRefGoogle Scholar
  14. 14.
    Balaxi, M., Nikolakakis, I., Kachrimanis, K., and Malamataris, S., J. Pharm. Sci., 2009, vol. 98, no. 2, pp. 676–689.CrossRefGoogle Scholar
  15. 15.
    Trache, D., Hussin, M.H., Chuin, C.T.H., Sabar, S., Fazita, M.R.N., Taiwo, O.F.A., Hassan, T.M., and Haafiz, M.K.M., Int. J. Biol. Macromol., 2016, vol. 93, part A, pp. 789–804.Google Scholar
  16. 16.
    Ummartyotin, S. and Manuspiya, H., Renewable Sustainable Energy Rev., 2015, vol. 41, pp. 402–412.CrossRefGoogle Scholar
  17. 17.
    Walker, J.C.F., Primary Wood Processing: Principles and Practice, Dordrecht: Springer, 2006.Google Scholar
  18. 18.
    Bajpai, P., Environmentally Benign Approaches for Pulp Bleaching, Amsterdam: Elsevier, 2005.Google Scholar
  19. 19.
    Popova, N.R., Tortseva, T.V., and Bogolitsyn, K.G., Russ. J. Appl. Chem., 2013, vol. 86, no. 8, pp. 1275–1279.CrossRefGoogle Scholar
  20. 20.
    Abad, S., Santos, V., and Parajό, J.C., Cellul. Chem. Technol., 2003, vol. 37, no. 3, pp. 333–343.Google Scholar
  21. 21.
    Ligero, P., Villaverde, J.J., de Vega, A., and Bao, M., Ind. Crops Prod., 2008, vol. 27, no. 1, pp. 110–117.CrossRefGoogle Scholar
  22. 22.
    Suchy, M. and Argyropoulos, D.S., ACS Symp. Ser., 2001, vol. 785, pp. 2–43.CrossRefGoogle Scholar
  23. 23.
    Håkansson, H. and Ahlgren, P., Cellulose, 2005, vol. 12, no. 2, pp. 177–183.CrossRefGoogle Scholar
  24. 24.
    Pavasars, I., Hagberg, J., Borén, H., and Allard, B., J. Polym. Environ., 2003, vol. 11, no. 2, pp. 39–47.CrossRefGoogle Scholar
  25. 25.
    Leppänen, K., Andersson, S., Torkelli, M., Knaapila, M., Kotelnikova, N., and Serimaa, R., Cellulose, 2009, vol. 16, no. 6, pp. 999–1015.CrossRefGoogle Scholar
  26. 26.
    Ioelovich, M. and Leykin, A., Cellul. Chem. Technol., 2006, vol. 40, no. 5, pp. 313–317.Google Scholar
  27. 27.
    US Patent 6 392 034, 2002.Google Scholar
  28. 28.
    US Patent 7 005 514, 2006.Google Scholar
  29. 29.
    Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., Yatsenkova, O.V., and Petrov, A.V., React. Kinet., Mech. Catal., 2011, vol. 104, no. 2, pp. 337–343.CrossRefGoogle Scholar
  30. 30.
    Analytical Methods in Wood Chemistry, Pulping and Papermaking, Sjöström, E. and Alén, R., Eds., Berlin: Springer, 1999.Google Scholar
  31. 31.
    Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., and Jonson, D.K., Biotechnol. Biofuels, 2010, vol. 3. Scholar
  32. 32.
    Handbook of Sustainable Polymers: Structure and Chemistry, Thakur, V.K. and Thakur, M.K., Eds., Boca Raton, FL: CRC Press/Taylor & Francis Group, 2016.Google Scholar
  33. 33.
    Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Djakovitch, L., and Pinel, C., React. Kinet., Mech. Catal., 2013, vol. 110, no. 2, pp. 271–280.CrossRefGoogle Scholar
  34. 34.
    Pen, R.Z., Planirovanie eksperimenta v Statgrachics Centurion (Design of Experiment in Statgraphics Centurion), Krasnoyarsk: Sib, Gos. Tekhnol. Univ., 2014.Google Scholar
  35. 35.
    Shankar, S. and Rhim, J.-W., Carbohydr. Polym., 2016, vol. 135, pp. 18–26.CrossRefGoogle Scholar
  36. 36.
    Chauhan, Y.P., Sapkal, R.S., Sapkal, V.S., and Zamre, G.S., Int. J. Chem. Sci., 2009, vol. 7, no. 2, pp. 681–688.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Federal Research Center, Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences,KrasnoyarskRussia
  2. 2.Siberian Federal University, KrasnoyarskRussia
  3. 3.IRCELYON,Villeurbanne CedexLyonFrance

Personalised recommendations