Catalysis in Industry

, Volume 10, Issue 4, pp 344–352 | Cite as

Studying the Steam Cracking of Heavy Oil over Iron- and Molybdenum-Containing Dispersed Catalysts in a Flow-Type Reactor

  • R. G. KukushkinEmail author
  • P. M. EletskiiEmail author
  • O. O. ZaikinaEmail author
  • G. A. SosninEmail author
  • O. A. BulavchenkoEmail author
  • V. A. YakovlevEmail author


Results are presented from studying the steam cracking of heavy oil at a temperature of 425°C and a pressure of 2.0 MPa over dispersed iron and molybdenum based catalysts in a slurry reactor. The catalysts are synthesized through the decomposition of water-soluble precursors of metal salts in situ. The yield of upgraded oil (the sum of liquid products) is found to grow with steam cracking, in comparison to thermal cracking (80 and 77%, respectively). The use of dispersed monometallic (iron- or molybdenum-containing) catalysts and a bimetallic catalyst for the catalytic steam cracking (CSC) of heavy oil increases the yield of SOPs. In addition, the yield of light fractions (Тb < 350°C) in the CSC process is found to grow in comparison to steam and thermal cracking, and the viscosity and density of products falls, relative to the initial feedstock.


upgrading of heavy oil feedstocks catalytic steam cracking oxidative cracking steam reforming dispersed catalysts 



This work was supported by the Russian Scientific Foundation, grant no. 15-13-00106.


  1. 1.
    International Energy Outlook 2016, US Energy Information Administration. 0484%282016%29.pdf. Cited November 20, 2017.Google Scholar
  2. 2.
    Omajali, J.B., Hart, A., Walker, M., Wood, J., and Macaskie, L.E., Appl. Catal., 2017, vol. 203, pp. 807–819.CrossRefGoogle Scholar
  3. 3.
    Muraza, O. and Galadima, A., Fuel, 2015, vol. 157, pp. 219–231.CrossRefGoogle Scholar
  4. 4.
    Alboudwarej, H., Felix, J, Taylor, S., Badry, R., Bremner, C., Brough, B., Skeates, C., Baker, A., Palmer, D., Pattison, K., Beshry, M., Krawchuk, P., Brown, G., Calvo, R., Triana, J.C., Hathcock, R., Koerner, K., Hughes, T., Kundu, D., De Cárdenas, J.L., and West, C., Oilfield Rev., 2006, vol. 18, pp. 34–53.Google Scholar
  5. 5.
    Alaei, M., Bazmi, M., Rashidi, A., and Rahimi, A., J. Pet. Sci. Eng., 2017, vol. 158, pp. 47–55.CrossRefGoogle Scholar
  6. 6.
    Arcelus-Arrillaga, P., Pinilla, J.L., Hellgardt, K., and Millan, M., Energy Fuels, 2017, vol. 31, no. 5, pp. 4571–4587.CrossRefGoogle Scholar
  7. 7.
    Mironenko, O.O., Sosnin, G.A., Eletskii, P.M., Gulyaeva, Yu.K., Bulavchenko, O.A., Stonkus, O.A., Rodina, V.O., and Yakovlev, V.A., Nanogeterog. Katal., 2017, vol. 2, no. 1, pp. 74–87.Google Scholar
  8. 8.
    Wen, S., Zhao, Y., Liu, Y., and Hu, S., Int. Symp. Oilfield Chem., 2007, pp. 1–5. 106180-MS.Google Scholar
  9. 9.
    Davudov, D. and Moghanloo, R.G., J. Pet. Sci. Eng., 2017, vol. 156, pp. 623–632.CrossRefGoogle Scholar
  10. 10.
    Li, N., Yan, B., and Xiao, X.-M., Energies, 2015, vol. 8, no. 8, pp. 8962–8989.CrossRefGoogle Scholar
  11. 11.
    Castañeda, L.C., Muñoz, J.A.D., and Ancheyta, J., Catal. Today, 2014, vols. 220–222, pp. 248–273.Google Scholar
  12. 12.
    Daud, A.R.M., Pinilla, J.L., Arcelus-Arrillaga, P., Hellgardt, K., Kandiyoti, R., and Millan, M., Heavy oil upgrading in subcritical and supercritical water: studies on model compounds. 259222792_Heavy_oil_upgrading_in_subcritical_and_ supercritical_water_studies_on_model_compounds. Cited November 20, 2017.Google Scholar
  13. 13.
    Fathi, M.M. and Pereira-Almao, P., Energy Fuels, 2011, vol. 25, no. 11, pp. 4867–4877.CrossRefGoogle Scholar
  14. 14.
    Nguyen-Huy, C. and Shin, E.W., Fuel, 2016, vol. 169, pp. 1–6.CrossRefGoogle Scholar
  15. 15.
    Fumoto, E., Tago, T., and Masuda, T., Energy Fuels, 2006, vol. 20, no. 1, pp. 1–6.CrossRefGoogle Scholar
  16. 16.
    Clark, P.D. and Kirk, M.J., Energy Fuels, 1994, vol. 8, no. 2, pp. 380–387.CrossRefGoogle Scholar
  17. 17.
    Duprez, D., Appl. Catal., A, 1992, vol. 82, no. 2, pp. 111–157.Google Scholar
  18. 18.
    Kim, C.J, J. Catal., 1978, vol. 52, no. 1, pp. 169–175.CrossRefGoogle Scholar
  19. 19.
    Kondoh, H., Nakasaka, Y., Kitaguchi, T., Yoshikawa, T., Tago, T., and Masuda, T., Fuel Process. Technol., 2016, vol. 145, pp. 96–101.CrossRefGoogle Scholar
  20. 20.
    Lee, H.S., Nguyen-Huy, C., Pham, T.-T., and Shin, E.W., Fuel, 2016, vol. 165, pp. 462–467.CrossRefGoogle Scholar
  21. 21.
    Kondoh, H., Hasegawa, N., Yoshikawa, T., Nakasaka, Y., Tago, T., and Masuda, T., Energy Fuels, 2016, vol. 30, no. 12, pp. 10358–10364.CrossRefGoogle Scholar
  22. 22.
    Sahu, R., Song, B.J., Im, J.S., Jeon, Y.-P., and Lee, C.W., J. Ind. Eng. Chem., 2015, vol. 27, pp. 12–24.CrossRefGoogle Scholar
  23. 23.
    Angeles, M.J., Leyva, C., Ancheyta, J., and Ramírez, S., Catal. Today, 2014, vols. 220–222, pp. 274–294.Google Scholar
  24. 24.
    Martinez-Grimaldo, H., Ortiz-Moreno, H., Sanchez-Minero, F., Ramírez, J., Cuevas-Garcia, R., and Ancheyta-Juarez, J., Catal. Today, 2014, vols. 220–222, pp. 295–300.Google Scholar
  25. 25.
    Ahn, H.K., Park, S.H., Sattar, S., and Woo, S.I., Catal. Today, 2016, vol. 265, pp. 118–123.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations