Catalysis in Industry

, Volume 10, Issue 4, pp 288–293 | Cite as

Carbon Dioxide Hydrogenation under Subcritical and Supercritical Conditions in the Presence of 15% Fe/SiO2 Catalyst

  • N. D. Evdokimenko
  • K. O. Kim
  • G. I. Kapustin
  • N. A. Davshan
  • A. L. KustovEmail author


Results are presented from a comparative study of CO2 hydrogenation under gas-phase and supercritical conditions for CO2 in the presence of 15% Fe/SiO2 catalyst. The reaction is studied in the temperature range of 300–500°C at atmospheric pressure under gas-phase conditions and at a pressure of 95 atm under supercritical conditions at an Н2 : СО2 molar ratio of 2 : 1. It is found that the process proceeding under supercritical conditions lowers CO selectivity from 90–95 to 30–50% over the range of temperatures and raises (up to 60%) the hydrocarbon selectivity. In contrast to gas-phase hydrogenation, the formation of alcohols is observed in the reaction under supercritical conditions. Using a combination of thermogravimetry, differential thermogravimetry, and differential thermal analysis (TG–DTG–DTA), it is shown that the process proceeding under supercritical conditions results in a 2.2-fold drop in the amount of carbon-like deposits on the catalyst surface. X-ray diffraction analysis shows that under gas-phase process conditions, graphite-like structures form on the catalyst surface; this effect is not observed under supercritical conditions. The developed catalyst and the process for CO2 hydrogenation can be recommended for the further modification and improvement of the properties of a catalyst based on iron nanoparticles that is much (10–100 times) cheaper than the previously reported CO2 hydrogenation catalysts.


supercritical fluid hydrogenation carbon dioxide supercritical conditions catalysis iron catalyst 



The authors thank I.V. Mishin (Zelinsky Institute of Organic Chemistry) for her assistance in our XRD studies of the catalyst samples and V.D. Nissenbaum (Zelinsky Institute of Organic Chemistry) for performing our TG–DTG–DTA studies of the samples. This work was supported by the RF Ministry of Education and Science, project identifier RFMEFI61615X0041.


  1. 1.
    Leitner, W., Acc. Chem. Res., 2002, vol. 35, no. 9, pp. 746–756.CrossRefGoogle Scholar
  2. 2.
    Kruse, A. and Vogel, H., Chem. Eng. Technol., 2008, vol. 31, no. 1, pp. 23–32.CrossRefGoogle Scholar
  3. 3.
    Utsis, N., Vidruk-Nehemya, R., Landau, M.V., and Herskowitz, M., Faraday Discuss., 2016, vol. 188, pp. 545–563.CrossRefGoogle Scholar
  4. 4.
    Da Ponte, M.N., J. Supercrit. Fluids, 2009, vol. 47, no. 3, pp. 344–350.Google Scholar
  5. 5.
    Liu, R., Zhang, P., Zhang, S., Yan, T., Xin, J., and Zhang, X., Rev. Chem. Eng., 2016, vol. 32, no. 6, pp. 587–609.CrossRefGoogle Scholar
  6. 6.
    Rakitin, M.Yu., Doluda, V.Yu., Tereshchenkov, A.Yu., Demidenko, G.N., Lakina, N.V., Matveeva, V.G., Sul’man, M.G., and Sul’man, E.M., Catal. Ind., 2015, vol. 7, no. 1, pp 1–5.CrossRefGoogle Scholar
  7. 7.
    Ramsey, E., Sun, Q., Zhang, Z., Zhang, C., and Gou, W., J. Environ. Sci., 2009, vol. 21, no. 6, pp. 720–726.CrossRefGoogle Scholar
  8. 8.
    Wang, W., Wang, S., Ma, X., and Gong, J., Chem. Soc. Rev., 2011, vol. 40, no. 7, pp. 3703–3727.CrossRefGoogle Scholar
  9. 9.
    Gao, P., Li, S., Bu, X., Dang, S., Liu, Z., Wang, H., Zhong, L., Qiu, M., Yang, C., Cai, J., Wei, W., and Sun, Y., Nat. Chem., 2017, vol. 9, pp. 1019–1024.CrossRefGoogle Scholar
  10. 10.
    Wang, X., Shi, H., and Szangi, J., Nat. Commun., 2017, vol. 8, no. 1, pp. 513–519.CrossRefGoogle Scholar
  11. 11.
    Saeidi, S., Najari, S., Fazlollahi, F., Nikoo, M.K., Sefidkon, F., Klemeš, J.J., and Baxter, L.L., Renewable Sustainable Energy Rev., 2017, vol. 80, pp. 1292–1311.CrossRefGoogle Scholar
  12. 12.
    Owen, R.E., Mattia, D., Plucinski, P., and Jones, M.D., ChemPhysChem, 2017, vol. 18, no. 22, pp. 3211–3218.CrossRefGoogle Scholar
  13. 13.
    Cubeiro, M.L., Morales, H., Goldwasser, M.R., Pérez-Zurita, M.J., González-Jiménez, F., and de N, C.U., Appl. Catal., A, 1999, vol. 189, no. 1, pp. 87–97.Google Scholar
  14. 14.
    Golosman, E.Z. and Efremov, V.N., Catal. Ind., 2012, vol. 4, no. 4, pp. 267–283.CrossRefGoogle Scholar
  15. 15.
    Hughes, R., Deactivation of Catalysts, London: Academic Press, 1984.Google Scholar
  16. 16.
    Bogdan, V.I., Klimenko, T.A., Kustov, L.M., and Kazansky, V.B., Appl. Catal., A, 2004, vol. 267, nos. 1–2, pp. 175–179.Google Scholar
  17. 17.
    Kustov, L.M., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 11, pp. 2006–2021.CrossRefGoogle Scholar
  18. 18.
    Shesterkina, A.A., Shuvalova, E.V., Kirichenko, O.A., Strelkova, A.A., Nissenbaum, V.D., Kapustin, G.I., and Kustov, L.M., Russ. J. Phys. Chem. A, 2017, vol. 91, no. 2, pp. 201–204.CrossRefGoogle Scholar
  19. 19.
    Kustov, L.M. and Tarasov, A.L., Mendeleev Commun., 2014, vol. 24, no. 6, pp. 349–350.CrossRefGoogle Scholar
  20. 20.
    Shesterkina, A.A., Kirichenko, O.A., Kozlova, L.M., Kapustin, G.I., Mishin, I.V., Strelkova, A.A., and Kustov, L.M., Mendeleev Commun., 2016, vol. 26, no. 3, pp. 228–230.CrossRefGoogle Scholar
  21. 21.
    Tada, S., Thiel, I., Lo, H.-K., and Copéret, C., Chimia, 2015, vol. 69, no. 12, pp. 759–764.CrossRefGoogle Scholar
  22. 22.
    Hu, B., Guild, C., and Suib, S.L., J. CO 2 Util., 2013, vol. 1, pp. 18–27.Google Scholar
  23. 23.
    Lee, J.-F., Chern, W.-S., Lee, M.-D., and Dong, T.-Y., Can. J. Chem. Eng., 1992, vol. 70, no. 3, pp. 511–515.CrossRefGoogle Scholar
  24. 24.
    Evdokimenko, N.D., Kustov, A.L., Kim, K.O., Igonina, M.S., and Kustov, L.M., Mendeleev Commun., 2018, vol. 28, no. 2, pp. 147–149.CrossRefGoogle Scholar
  25. 25.
    Peng, D.-Y. and Robinson, D.B., Ind. Eng. Chem. Fundam., 1976, vol. 15, no. 1, pp. 59–64.CrossRefGoogle Scholar
  26. 26.
    Bezanehtak, K., Combes, G.B., Dehghani, F., Foster, N.R., and Tomasko, D.L., J. Chem. Eng. Data, 2002, vol. 47, no. 2, pp. 161–168.CrossRefGoogle Scholar
  27. 27.
    Spano, J.O., Heck, C.K., and Barrick, P.L., J. Chem. Eng. Data, 1968, vol. 13, no. 2, pp. 168–171.CrossRefGoogle Scholar
  28. 28.
    Tsang, C.Y. and Streett, W.B., Chem. Eng. Sci., 1981, vol. 36, no. 6, pp. 993–1000.CrossRefGoogle Scholar
  29. 29.
    Zhang, H., Han, B., Hou, Z., and Liu, Z., Fluid Phase Equilib., 2001, vol. 179, nos. 1–2, pp. 131–138.Google Scholar
  30. 30.
    Hartl, M., Gillis, R.C., Daemen, L., Olds, D.P., Page, K., Carlson, S., Cheng, Y., Hügle, T., Iverson, E.B., Ramirez-Cuesta, A.J., Lee, Y., and Muhrer, G., Phys. Chem. Chem. Phys., 2016, vol. 18, no. 26, pp. 17281–17293.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. D. Evdokimenko
    • 1
  • K. O. Kim
    • 2
  • G. I. Kapustin
    • 1
  • N. A. Davshan
    • 1
  • A. L. Kustov
    • 1
    • 2
  1. 1.Zelinsky Institute of Organic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations