Catalysis in Industry

, Volume 10, Issue 3, pp 222–227 | Cite as

Isomerization of n-Heptane in the Presence of Aromatic Hydrocarbons over Pt/MOR/Al2O3 and Pt/WO3/ZrO2 Catalysts

  • M. D. SmolikovEmail author
  • V. A. ShkurenokEmail author
  • S.S. YablokovaEmail author
  • D. I. Kir’yanovEmail author
  • A. S. BelyiEmail author


The effect of aromatic hydrocarbons (benzene, toluene) on the isomerization of n-heptane over Pt/MOR/Al2O3 and Pt/WO3/ZrO2 catalysts is studied. It is shown that the presence of aromatic hydrocarbons results in a need to raise the reaction temperature by 20–30°C to achieve n-heptane conversion at the same level as for individual n-heptane. It is established that the yield of heptane isomers falls in 1.5 times (from 60.1 to 39.9 wt %) during the isomerization of n-heptane mixed with aromatic hydrocarbons over Pt/MOR/Al2O3 catalyst and remains at the same level (60.4–68.0 wt %) over Pt/WO3/ZrO2 catalyst. The developed catalysts can be used in industry to isomerize the C7 fraction separated from straight-run and catalytic reforming gasolines. The presence of aromatic hydrocarbons in feedstocks is undesirable when Pt/MOR/Al2O3 catalyst is used, as it reduces the yield of isomers.


n-heptane isomerization platinum mordenite tungstated zirconia benzene toluene 



This work was carried out according to the state task of the IHP SB RAS, task V.46, project no. V.46.2.4.


  1. 1.
    TR TS (Customs Union Technical Regulation) 013/2011: Requirements to Automobile and Aviation Gasoline, Diesel and Ship Fuel, Jet Engine Fuel and Furnace Boiler Oil, 2011.Google Scholar
  2. 2.
    Shakun, A.N. and Fedorova, M.L., Catal. Ind., 2014, vol. 6, no. 4, pp. 298–306.CrossRefGoogle Scholar
  3. 3.
    Yasakova, E.A., Sitdikova, A.V., and Akhmetov, A.F., Neftegaz. Delo, 2010, no. 1, p. 24.Google Scholar
  4. 4.
    Khurshid, M., Al-Daous, M.A., Hattori, H., and Al-Khattaf, S.S., Appl. Catal., A, 2009, vol. 362, nos. 1–2, pp. 75–81.Google Scholar
  5. 5.
    RF Patent 2408659, 2009.Google Scholar
  6. 6.
    Kuznetsova, L.I., Kazbanova, A.V., Solov’ev, L.A., Mikhlin, Yu.L., Paukshtis, E.A., and Kuznetsov, P.N., Russ. J. Phys. Chem. A, 2012, vol. 86, no. 10, pp 1614–1617.CrossRefGoogle Scholar
  7. 7.
    Corma, A., Serra, J.M., and Chica, A., Catal. Today, 2003, vol. 81, no. 3, pp. 495–506.CrossRefGoogle Scholar
  8. 8.
    Demirci, U.B. and Garin, F., J. Mol. Catal. A: Chem., 2002, vol. 188, nos. 1–2, pp. 233–243.Google Scholar
  9. 9.
    Valyon, J., Engelhardt, J., Lonyi, F., and Sándor, Zs., Stud. Surf. Sci. Catal., 1999, vol. 125, pp. 375–382.CrossRefGoogle Scholar
  10. 10.
    Miyaji, A. and Okuhara, T., Catal. Today, 2003, vol. 81, no. 1, pp. 43–49.CrossRefGoogle Scholar
  11. 11.
    Smolikov, M.D., Shkurenok, V.A., Yablokova, S.S., Kir’yanov, D.I., Belopukhov, E.A., Zaikovskii, V.I., and Belyi, A.S., Catal. Ind., 2014, vol. 6, no. 3, pp. 223–230.CrossRefGoogle Scholar
  12. 12.
    Shkurenok, V.A., Smolikov, M.D., Yablokova, S.S., Kiryanov, D.I., Belyi, A.S., Paukshtis, E.A., Leonteva, N.N., Gulyaeva, T.I., Shilova, A.V., and Drozdov, V.A., Procedia Eng., 2015, vol. 113, pp. 62–67.CrossRefGoogle Scholar
  13. 13.
    Belopukhov, E.A., Smolikov, M.D., Kir’yanov, D.I., and Belyi, A.S., Zh. Sib. Fed. Univ., Khim., 2012, vol. 5, no. 4, pp. 398–404.Google Scholar
  14. 14.
    Smolikov, M.D., Shkurenok, V.A., Yablokova, S.S., Kir’yanov, D.I., Paukshtis, E.A., Leont’eva, N.N., Belyi, A.S., and Drozdov, V.A., Catal. Ind., 2017, vol. 9, no. 1, pp. 54–61.CrossRefGoogle Scholar
  15. 15.
    Martin, A.M., Chen, J. K., John, V.T., and Dadyburjor, D.B., Ind. Eng. Chem. Res., 1989, vol. 28, no. 11, pp. 1613–1618.CrossRefGoogle Scholar
  16. 16.
    Zhorov, Yu.M., Termodinamika khimicheskikh pro-tsessov (Thermodynamics of Chemical Processes), Moscow: Khimiya, 1985.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Hydrocarbons Processing, Siberian Branch, Russian Academy of SciencesOmskRussia

Personalised recommendations