Catalysis in Industry

, Volume 10, Issue 3, pp 228–236 | Cite as

Study of the Composition Effect of Molybdenum-Modified Nickel–Copper Catalysts on Their Activity and Selectivity in the Hydrogenation of Furfural to Different Valuable Chemicals

  • A. A. SmirnovEmail author
  • I. N. ShilovEmail author
  • M. V. AlekseevaEmail author
  • S. A. SelishchevaEmail author
  • V. A. YakovlevEmail author


The modification effect of NiCu–SiO2 catalysts by molybdenum on their activity and selectivity in the hydrogenation of furfural—a product of the acid hydrolysis of hemicellulose biomass—was studied. The original NiCu catalyst was synthesized by the sol–gel method and stabilized with 10 wt % SiO2 by impregnating the calcined sol–gel with an appropriate amount of ethyl silicate. Molybdenum was introduced by impregnation of the original catalyst with an aqueous solution of ammonium molybdate. The selective hydrogenation of furfural was carried out in a batch reactor at temperatures of 100–200°C and a hydrogen pressure of 6 MPa. It was shown that an increase in the process temperature in the presence of the molybdenum-containing catalyst increases the yield of 2-methylfuran and products of complete hydrogenation. At low process temperatures a small amount of 2-methylfuran is formed; the main products are furfuryl and tetrahydrofurfuryl alcohols. The modified NiCuMo–SiO2 catalysts exhibit higher activity in hydrogenation of furfural and greater 2-methylfuran selectivity than the respective parameters of NiCu systems, due apparently to the formation of NiMo(Cu) solid solutions, and the formation of Mox+ on the catalyst surface.


furfural furfuryl alcohol 2-methylfuran high-octane additives hydrogenation 



This work was supported by the RF Ministry of Education and Science, agreement no. 14.575.21.0171, identification number RFMEFI57517X0171, “Development of Methods for Processing of Products of Non-food Plant Raw Materials Conversion Into Furanic High-Octane Additives for Motor Fuels and Into Other High-Value Chemical Products.”


  1. 1.
    Zhang, L., Xi, G., Yu, K., Yu, H., and Wang, X., Ind. Crops Prod., 2017, vol. 98, pp. 68–75.CrossRefGoogle Scholar
  2. 2.
    Chen, X., Yang, H., Chen, Y., Chen, W., Lei, T., Zhang, W., and Chen, H., J. Anal. Appl. Pyrolysis, 2017, vol. 127, pp. 292–298.CrossRefGoogle Scholar
  3. 3.
    Stöcker, M., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, no. 48, pp. 9200–9211.CrossRefGoogle Scholar
  4. 4.
    Mamman, A.S., Lee, J.-M., Kim, Y.-C., Hwang, I.T., Park, N.-J., Hwang, Y.K., Chang, J.-S., and Hwang, J.-S., Biofuels, Bioprod. Biorefin., 2008, vol. 2, no. 5, pp. 438–454.CrossRefGoogle Scholar
  5. 5.
    Lange, J.-P., van der Heide, E., van Buijtenen, J., and Price, R., ChemSusChem, 2012, vol. 5, no. 1, pp. 150–166.CrossRefGoogle Scholar
  6. 6.
    Hoydonckx, H.E., Van Rhijn, W.M., Van Rhijn, W., De Vos, D.E., and Jacobs, P.A., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000. 10.1002/14356007.a12_119.pub2Google Scholar
  7. 7.
    Yan, K., Wu, G., Lafleur, T., and Jarvis, C., Renewable Sustainable Energy Rev., 2014, vol. 38, pp. 663–676.CrossRefGoogle Scholar
  8. 8.
    Ma, X., Jiang, C., Xu, H., Ding, H., and Shuai, S., Fuel, 2014, vol. 116, pp. 281–291.CrossRefGoogle Scholar
  9. 9.
    Bremner, J.G.M. and Keeys, R.K.F., J. Chem. Soc., 1947, pp. 1068–1080. articlelanding/1947/jr/jr9470001068#!divAbstractGoogle Scholar
  10. 10.
    Wojcik, B.H., Ind. Eng. Chem., 1948, vol. 40, no. 2, pp. 210–216.CrossRefGoogle Scholar
  11. 11.
    Ordomsky, V.V., Schouten, J.C., van der Schaaf, J., and Nijhuis, T.A., Appl. Catal., A, 2013, vol. 451, pp. 6–13.Google Scholar
  12. 12.
    Taylor, M.J., Durndell, L.J., Isaacs, M.A., Parlett, C.M.A., Wilson, K., Lee, A.F., and Kyriakou, G., Appl. Catal., B, 2016, vol. 180, pp. 580–585.CrossRefGoogle Scholar
  13. 13.
    Yuan, Q., Zhang, D., van Haandel, L., V., Ye, F., Xue, T., Hensen, E.J.M., and Guan, Y., J. Mol. Catal. A: Chem., 2015, vol. 406, pp. 58–64.CrossRefGoogle Scholar
  14. 14.
    Ardiyanti, A.R., Khromova, S.A., Venderbosch, R.H., Yakovlev, V.A., and Heeres, H.J., Appl. Catal., B, 2012, vols. 117–118, pp. 105–117.Google Scholar
  15. 15.
    Yakovlev, V.A., Khromova, S.A., Sherstyuk, O.V., Dundich, V.O., Ermakov, D.Yu., Novopashina, V.M., Lebedev, M.Yu., Bulavchenko, O., and Parmon, V.N., Catal. Today, 2009, vol. 144, nos. 3–4, pp. 362–366.Google Scholar
  16. 16.
    Khromova, S.A., Smirnov, A.A., Bulavchenko, O.A., Saraev, A.A., Kaichev, V.V., Reshetnikov, S.I., and Yakovlev, V.A., Appl. Catal., A, 2014, vol. 470, pp. 261–270.Google Scholar
  17. 17.
    Smirnov, A.A., Khromova, S.A., Ermakov, D.Yu., Bulavchenko, O.A., Saraev, A.A., Aleksandrov, P.V., Kaichev, V.V., and Yakovlev, V.A., Appl. Catal., A, 2016, vol. 514, pp. 224–234.Google Scholar
  18. 18.
    Smirnov, A.A., Geng, Zh., Khromova, S.A., Zavaru-khin, S.G., Bulavchenko, O.A., Saraev, A.A., Kaichev, V.V., Ermakov, D.Yu., and Yakovlev, V.A., J. Catal., 2017, vol. 354, pp. 61–77.CrossRefGoogle Scholar
  19. 19.
    Bykova, M.V., Ermakov, D.Yu., Khromova, S.A., Smirnov, A.A., Lebedev, M.Yu., and Yakovlev, V.A., Catal. Today, 2014, vols. 220–222, pp. 21–31.Google Scholar
  20. 20.
    Ermakova, M.A. and Ermakov, D.Yu., Appl. Catal., A, 2003, vol. 245, no. 2, pp. 277–288.Google Scholar
  21. 21.
    Kukushkin, R.G., Bulavchenko, O.A., Kaichev, V.V., and Yakovlev, V.A., Appl. Catal., B, 2015, vol. 163, pp. 531–538.CrossRefGoogle Scholar
  22. 22.
    Williams, C.C. and Ekerdt, J.G., J. Phys. Chem., 1993, vol. 97, no. 26, pp. 6843–6852.CrossRefGoogle Scholar
  23. 23.
    PDF. # 04-0850.Google Scholar
  24. 24.
    PDF. # 44-1159.Google Scholar
  25. 25.
    PDF. # 04-0836.Google Scholar
  26. 26.
    PDF. # 42-1120.Google Scholar
  27. 27.
    Sinfelt, J.H., Carter, J.L., and Yates, D.J.C., J. Catal., 1972, vol. 24, no. 2, pp. 283–296.CrossRefGoogle Scholar
  28. 28.
    Kim, S., Kim, M.C., Choi, S.-H., Kim, K.J., Hwang, H.N., and Hwang, C.C., Appl. Phys. Lett., 2007, vol. 91, no. 10, p. 103113. doi 10.1063/1.2776014CrossRefGoogle Scholar
  29. 29.
    Poulston, S., Parlett, P.M., Stone, P., and Bowker, M., Surf. Interface Anal., 1996, vol. 24, no. 12, pp. 811–820.CrossRefGoogle Scholar
  30. 30.
    McIntyre, N.S. and Cook, M.G., Anal. Chem., 1975, vol. 47, no. 13, pp. 2208–2213.CrossRefGoogle Scholar
  31. 31.
    Bykova, M.V., Ermakov, D.Yu., Kaichev, V.V., Bulavchenko, O.A., Saraev, A.A., Lebedev, M.V., and Yakovlev, V.A., Appl. Catal., B, 2012, vols. 113–114, pp. 296–307.Google Scholar
  32. 32.
    Robertson, S.D., McNicol, B.D., De Baas, J.H., Kloet, S.C., and Jenkins, J.W., J. Catal., 1975, vol. 37, no. 3, pp. 424–431.CrossRefGoogle Scholar
  33. 33.
    Bianchi, C.L., Cattania, M.G., and Villa, P., Appl. Surf. Sci., 1993, vols. 70-71, part 1, pp. 211–216.CrossRefGoogle Scholar
  34. 34.
    DeCanio, S.J., Cataldo, M.C., DeCanio, E.C., and Storm, D.A., J. Catal., 1989, vol. 119, no. 1, pp. 256–260.CrossRefGoogle Scholar
  35. 35.
    Óvári, L., Kiss, J., Farkas, A.P., and Solymosi, F., J. Phys. Chem. B, 2005, vol. 109, no. 10, pp. 4638–4645.CrossRefGoogle Scholar
  36. 36.
    Khromova, S.A., Bykova, M.V., Bulavchenko, O.A., Ermakov, D.Yu., Saraev, A.A., Kaichev, V.V., Venderbosch, R.H., and Yakovlev, V.A., Top. Catal., 2016, vol. 59, nos. 15–16, pp. 1413–1423.Google Scholar
  37. 37.
    Kim, M.S., Simanjuntak, F.S.H., Lim, S., Jae, J., Ha, J.-M., and Lee, H., J. Ind. Eng. Chem., 2017, vol. 52, pp. 59–65.CrossRefGoogle Scholar
  38. 38.
    Wei, S., Cui, H., Wang, J., Zhuo, S., Yi, W., Wang, L., and Li, Z., Particuology, 2011, vol. 9, no. 1, pp. 69–74.CrossRefGoogle Scholar
  39. 39.
    Lei, J. and Shi, Q., Nonferrous Met., 2007, vol. 59, no. 3, pp. 58–61.Google Scholar
  40. 40.
    Koso, S., Nakagawa, Y., and Tomishige, K., J. Catal., 2011, vol. 280, no. 2, pp. 221–229.CrossRefGoogle Scholar
  41. 41.
    Koso, S., Ueda, N., Shinmi, Y., Okumura, K., Kizuka, T., and Tomishige, K., J. Catal., 2009, vol. 267, no. 1, pp. 89–92.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations