Advertisement

Catalysis in Industry

, Volume 10, Issue 3, pp 257–262 | Cite as

Enhancing the Yield of Bioethanol from the Lignocellulose of Oat Hulls by Optimizing the Composition of the Nutrient Medium

  • E. A. Skiba
  • G. F. Mironova
  • A. A. Kukhlenko
  • S. E. Orlov
BIOCATALYSIS

Abstract

The optimum composition is determined for a nutrient medium corresponding to the maximum yield of bioethanol during the alcohol fermentation of the enzymatic hydrolyzate of lignocellulosic material, produced by treating oat hulls with a diluted solution of nitric acid in trial production. The biotechnological steps of saccharification and fermentation are performed using commercially available enzymatic preparations CelloLux-A and BrewZyme BGX, plus a strain of Saccharomyces сerevisiae Y-1693 (VKPM) that is resistant to inhibitors from hydrolyzates. The composition of a nutrient medium that produced a bioethanol yield which was 89.9% of the theoretical one (8.4% higher than the native hydrolyzate) is found to have a 1.82 g/L concentration of ammonium sulfate, a 0.98 g/L concentration of potassium monophosphate, and a 6.47 g/L concentration of yeast extract.

Keywords:

optimization oat hulls nitric acid enzymatic hydrolysis nutrient medium alcoholic fermentation bioethanol 

Notes

REFERENCES

  1. 1.
    Biorefineries—Industrial Processes and Products/ Status Quo and Future Directions, Kamm, B., Gruber, P.R., and Kamm, M., Eds., Weinheim: WILEY-VCH, 2010.Google Scholar
  2. 2.
    Mussatto, S.I., Dragone, G., Guimarães, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., and Teixeira, J.A., Biotechnol. Adv., 2010, vol. 28, no. 6, pp. 817–830.CrossRefGoogle Scholar
  3. 3.
    Balat, M., Balat, H., and Öz, C., Prog. Energy Combust. Sci., 2008, vol. 34, no. 5, pp. 551–573.CrossRefGoogle Scholar
  4. 4.
    Global solutions/Inbicon. http://www.inbicon.com/en. Cited July 16, 2018.Google Scholar
  5. 5.
    Larsen, J., Østergaard Petersen, M., Thirup, L., Wen Li, H., and Krogh Iversen, F., Chem. Eng. Technol., 2008, vol. 31, no. 5, pp. 765–772.CrossRefGoogle Scholar
  6. 6.
    Lawford, H.G., Rousseau, J.D., and Tolan, J.S., Appl. Biochem. Biotechnol., 2001, vol. 91, nos. 1–9, pp. 133–146.Google Scholar
  7. 7.
    Agrawal, R., Satlewal, A., Gaur, R., Mathur, A., Kumar, R., Gupta, R.P., and Tuli, D.K., Biochem. Eng. J., 2015, vol. 102, pp. 54–61.CrossRefGoogle Scholar
  8. 8.
    McMillan, J.D., Jennings, E.W., Mohagheghi, A., and Zuccarello, M., Biotechnol. Biofuels, 2011, vol. 4, pp. 29–46.CrossRefGoogle Scholar
  9. 9.
    Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K.B., and Ramakrishnan, S., Enzyme Res., 2011, vol. 2011. http://dx.doi.org/10.4061/2011/787532Google Scholar
  10. 10.
    Hu, F. and Ragauskas, A., BioEnergy Res., 2012, vol. 5, no. 4, pp. 1043–1066.CrossRefGoogle Scholar
  11. 11.
    Podgorbunskikh, E.M., Bychkov, A.L., and Lomovskii, O.I., Catal. Ind., 2016, vol. 8, no. 3, pp. 274–279.CrossRefGoogle Scholar
  12. 12.
    Saha, B.C., Nichols, N.N., Qureshi, N., Kennedy, G.J., Iten, L.B., and Cotta, M.A., Bioresour. Technol., 2015, vol. 175, pp. 17–22.CrossRefGoogle Scholar
  13. 13.
    Baibakova, O.V., Skiba, E.A., Budaeva, V.V., and Sakovich, G.V., Catal. Ind., 2017, vol. 9, no. 3, pp. 257–263.CrossRefGoogle Scholar
  14. 14.
    Skiba, E.A., Budaeva, V.V., Baibakova, O.V., Zolotukhin, V.N., and Sakovich, G.V., Biochem. Eng. J., 2017, vol. 126, pp. 118–125. http://dx.doi.org/ doi 10.1016/j.bej.2016.09.003CrossRefGoogle Scholar
  15. 15.
    Gracheva, I.M. and Krivova, A.Yu., Tekhnologiya fermentnykh preparatov (Technology of Enzyme Preparations), Moscow: Elevar, 2000.Google Scholar
  16. 16.
    Huang, Y., Qin., X., Luo, X.-M., Nong, Q., Yang, Q., Zhang, Z., Gao., Y., Lv, F., Chen, Y.,Yu., Z., Liu, J.-L., and Feng, J.-X., Biomass Bioenergy, 2015, vol. 77, pp. 53–63.CrossRefGoogle Scholar
  17. 17.
    Khol'kin, Yu.I., Tekhnologiya gidroliznykh proizvodstv. Uchebnik dlya vuzov (Technology of Hydrolytic Production: Textbook for Universities), Moscow: Lesnaya promyshlennost’, 1989.Google Scholar
  18. 18.
    Rimareva, L.V. and Vorontsova, N.N., Mikrobiologi-cheskii kontrol’ spirtovogo i fermentnogo proizvodstv (Microbial Control for Alcohol and Enzyme Production), Moscow: Rossel’khozakademiya, 2005.Google Scholar
  19. 19.
    Skiba, E.A. and Baibakova, O.V., Polzunovskii Vestn., 2013, no. 3, pp. 214–219.Google Scholar
  20. 20.
    GOST (State Standard) 10820-75: Pulp. Method for Determination of Pentosans Fraction of Total Mass, Moscow: Izd. Standartov, 1991.Google Scholar
  21. 21.
    GOST (State Standard) 3639-79: Water-Alcohol Solutions. Methods for the Determination of the Ethyl Alcohol Content, Moscow: Izd. Standartov, 2004.Google Scholar
  22. 22.
    Gmurman, V.E., Teoriya veroyatnostei i matematicheskaya statistika: Uchebnoe posobie dlya vuzov (Theory of Probability and Mathematical Statistics: Textbook for Universities), Moscow: Vysshaya Shkola, 2003.Google Scholar
  23. 23.
    Yarovenko, V.L., Marinchenko, V.A., Smirnov, V.A., Ustinnikov, B.A., Tsygankov, P.S., Shvets, V.N., and Belov, N.I., Tekhnologiya spirta (Alcohol Technology), Yarovenko, V.L., Ed., Moscow: Kolos, 2002.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Skiba
    • 1
  • G. F. Mironova
    • 1
  • A. A. Kukhlenko
    • 1
  • S. E. Orlov
    • 1
  1. 1.Institute for Problems of Chemical and Energetic Technologies, Siberian Branch, Russian Academy of SciencesBiyskRussia

Personalised recommendations