Catalysis in Industry

, Volume 10, Issue 3, pp 217–221 | Cite as

Cracking of Heavy Hydrocarbon Feedstocks in the Presence of Cobalt

  • M. A. MorozovEmail author
  • A. S. AkimovEmail author
  • T. A. FedushchakEmail author
  • S. P. ZhuravkovEmail author
  • V. A. VlasovEmail author
  • E. A. SudarevEmail author
  • A. V. VosmerikovEmail author


More than 70% of the world’s reserves of hydrocarbons is in the form of heavy petroleum feedstocks. Increasing the efficiency and depth of processing of such feedstocks is an important problem of petroleum refining. Cobalt powders and their catalysts prepared in a single stage are tested for the first time in the cracking process at the Novokuibyshevsk petroleum refinery. The composition and properties of the samples are studied via X-ray phase analysis, scanning electron microscopy, and temperature-programmed reduction. Surfaces of cobalt contains oxygen in Co3O4 and CoO inside layers, while mechanoactivation redistributes some of these oxides and alters the composition of products of tar cracking. Cobalt has more catalytic activity in the cracking of tar after mechanoactivation than the original powder. The yield of light fractions is 70% with mechanically activated cobalt, 10 wt % higher than without mechanoactivation, and 25% higher than with no cobalt powders.


heavy hydrocarbon feedstocks cracking mechanoactivation cobalt 



This work was performed as part of the Basic Scientific Research program of state science academies, project no. V.46.2.1.


  1. 1.
    Metamorphoses in the markets of petroleum products. Analytical Canter for the Government of the Russian Federation Official Website. Energy Bulletin, 2016, no. 33. Cited July 15, 2018.Google Scholar
  2. 2.
    Akhmetov, A.F., Bashk. Khim. Zh., 2011, vol. 18, no. 2, pp. 93–98.Google Scholar
  3. 3.
    Fan, H., Zhang, Y., and Lin, Y., Fuel, 2004, vol. 83, nos. 14–15, pp. 2035–2039.Google Scholar
  4. 4.
    Hart, A., Greaves, M., and Wood, J., Chem. Eng. J., 2015, vol. 282, pp. 213–223.CrossRefGoogle Scholar
  5. 5.
    Rana, S.M., Sámano, V., Ancheyta, J., and Diaz, J.A.I., Fuel, 2007, vol. 86, no. 9, pp. 1216–1231.CrossRefGoogle Scholar
  6. 6.
    Nguyen, T.S., Tayakout-Fayolle, M., Lacroix, M., Gotteland, D., Aouine, M., Bacaud, R., Afanasiev, P., and Geanted, C., Fuel, 2015, vol. 160, pp. 50–56.CrossRefGoogle Scholar
  7. 7.
    Gao, H., Wang, G., Wang, H., Chen, J., Xu, C., and Gao, J., Energy Fuels, 2012, vol. 26, no. 3, pp. 1870–1879.CrossRefGoogle Scholar
  8. 8.
    Castañeda, L., Muñoz, J.A.D., and Ancheyta, J., Fuel, 2012, vol. 100, pp. 110–127.CrossRefGoogle Scholar
  9. 9.
    Menoufy, M.F., Ahmed, H.S., Betiha, M.A., and Sayed, M.A., Fuel, 2014, vol. 119, pp. 106–110.CrossRefGoogle Scholar
  10. 10.
    Fumoto, E., Matsumura, A., Sato, S., and Takanohashi, T., Energy Fuels, 2009, vol. 23, no. 3, pp. 1338–1341.CrossRefGoogle Scholar
  11. 11.
    Golovko, A.K., Kopytov, M.A., Sharonova, O.M., Kiric, N.P., and Anshits, A.G., Catal. Ind., 2015, vol. 7, no. 4, pp. 293–300.CrossRefGoogle Scholar
  12. 12.
    Gerzeliev, I.M., Arslanov, R.M., and Kapustin, V.M., Tekhnol. Nefti Gaza, 2015, no. 4, pp. 8–13.Google Scholar
  13. 13.
    Gerzeliev, I.M., Arslanov, R.M., Kapustin, V.M., Bondarenko, G.N., and Khadzhiev, S.N., Pet. Chem., 2016, vol. 56, no. 1, pp. 51–55.CrossRefGoogle Scholar
  14. 14.
    Murzagaliev, T.M., Vosmerikov, A.V., Golovko, A.V., Fedushchak, T.A., and Ogorodnikov, V.D., Zh. Sib. Fed. Univ., Khim., 2012, vol. 5, no. 2, pp. 224–235.Google Scholar
  15. 15.
    RF Patent 2445344, 2012.Google Scholar
  16. 16.
    Kogan, V.M. and Parvenova, N.M., Stud. Surf. Sci. Catal., 1997, vol. 106, p. 449–462.CrossRefGoogle Scholar
  17. 17.
    Lapidus, A., Krylova, A., Rathouský, J., Zukal, A., and Jancăková, M., Appl. Catal., A, 1992, vol. 80, no. 1, pp. 1–11.Google Scholar
  18. 18.
    Fierro, G., Lo Jacono, M., Inversi, M., Dragone, R., and Porta, P., Top. Catal., 2000, vol. 10, nos. 1–2, pp. 39–48.Google Scholar
  19. 19.
    Jacobs, G., Das, T.K., Zhang, Y., Li, J., Racoillet, G., and Davis, B.H., Appl. Catal., A, 2002, vol. 233, nos. 1–2, pp. 263–281.Google Scholar
  20. 20.
    Ji, Y., Zhao, Z., Duan, A., Jiang, G., and Liu, J., J. Phys. Chem. C, 2009, vol. 113, no. 17, pp. 7186–7199.CrossRefGoogle Scholar
  21. 21.
    Eletskii, P.M., Mironenko, O.O., Selishcheva, S.A., and Yakovlev, V.A., Catal. Ind., 2016, vol. 8, no. 3, pp. 217–223.CrossRefGoogle Scholar
  22. 22.
    Petrukhina, N.N., Kayukova, G.P., Romanov, G.V., Tumanyan, B.P., Foss, L.E., Kosachev, I.P., Musin, R.Z., Ramazanova, A.I., and Vakhin, A.V., Chem. Technol. Fuels Oils, 2014, vol. 50, no. 4, pp. 315–326.CrossRefGoogle Scholar
  23. 23.
    Zurnachyan, A.R., Manukyan, Kh.V., Kharatyan, S.L., Matyshak, V.A., and Mnatsakanyan, R.A., Kinet. Catal., 2011, vol. 52, no. 6, pp. 851–854.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations