Catalysis in Industry

, Volume 10, Issue 3, pp 251–256 | Cite as

Magnetically Recoverable Ruthenium-Containing Catalysts for Polysaccharide Conversion

  • O. V. ManaenkovEmail author
  • E. A. RatkevichEmail author
  • O. V. KislitsaEmail author
  • V. G. MatveevaEmail author
  • M. G. Sul’man
  • E. M. Sul’man


A new Ru-containing catalyst based on Fe3O4–SiO2 particles that exhibit magnetic properties is proposed for the hydrogenolysis of cellulose to glycols and the hydrolytic hydrogenation of inulin to mannitol. The effect of process parameters on the selectivity toward the main products is studied. Under optimum conditions of cellulose hydrogenolysis, the total glycol selectivity is ≈40% (ethylene glycol, 19.1%; propylene glycol, 20.9%) at 100% cellulose conversion. In the hydrolytic hydrogenation of inulin, the maximum mannitol selectivity is 44.3% at a 100% conversion of the feed polysaccharide. The proposed catalyst is stable under hydrothermal process conditions, and can be easily separated from the reaction mass using an external magnetic field.


cellulose inulin magnetically recoverable catalysts hydrogenolysis ethylene glycol propylene glycol hydrolytic hydrogenation mannitol 



The authors thank L.M. Bronstein at the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, for her assistance in our research. This work was supported by the Russian Foundation for Basic Research, project nos. 16-08-00401, 18-08-00404; and by the Russian Science Foundation, project no. 17-19-01408.


  1. 1.
    Yue, H., Zhao, Y., Ma, X., and Gong, J., Chem. Soc. Rev., 2012, vol. 41, no. 11, pp. 4218–4244.CrossRefPubMedGoogle Scholar
  2. 2.
    Harlin, A.H., in Handbook of Bioplastics and Biocomposites Engineering Applications, Pilla, S., Ed., Hoboken, NJ: Wiley/Scrivener, 2011. pp. 511–544.Google Scholar
  3. 3.
    Sugiyama, S., Tanaka, H., Bando, T., Nakagawa, K., Sotowa, K.-I., Katou, Y., Mori, T., Yasukawa, T., and Ninomiya, W., Catal. Today, 2013, vol. 203, pp. 116–121.CrossRefGoogle Scholar
  4. 4.
    Catalytic Process Development for Renewable Materials, Imhof, P.J. and van der Waal, J.C., Eds., Weinheim: Wiley-VCH, 2013.Google Scholar
  5. 5.
    Ohrem, H.L., Schornick, E., Kalivoda, A., and Ognibene, R., Pharm. Dev. Technol., 2014, vol. 19, no. 3, pp. 257–262.CrossRefPubMedGoogle Scholar
  6. 6.
    Luo, C., Wang, S., and Liu, H., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, no. 40, pp. 7636–7639.CrossRefGoogle Scholar
  7. 7.
    Catalytic Hydrogenation for Biomass Valorization, Rinaldi, R., Ed., Cambridge: RSC Publishing, 2014.Google Scholar
  8. 8.
    Heinen, A.W., Peters, J.A., and van Bekkum, H., Carbohydr. Res., 2001, vol. 330, no. 3, pp. 381–390.CrossRefPubMedGoogle Scholar
  9. 9.
    Manaenkov, O.V., Filatova, A.E., Makeeva, O.Yu., Kislitza, O.V., Doluda, V.Yu., Sidorov, A.I., Mat-veeva, V.G., and Sul’man, E.M., Catal. Ind., 2014, vol. 6, no. 2, pp. 150–157.CrossRefGoogle Scholar
  10. 10.
    Dhepe, P.L. and Fukuoka, A., Catal. Surv. Asia, 2007, vol. 11, no. 4, pp. 186–191.CrossRefGoogle Scholar
  11. 11.
    Kobayashi, H., Ito, Y., Komanoya, T., Hosaka, Y., Dhepe, P.L., Kasai, K., Hara, K., and Fukuoka, A., Green Chem., 2011, vol. 13, no. 2, pp. 326–333.CrossRefGoogle Scholar
  12. 12.
    Wang, D. and Astruc, D., Chem. Rev., 2014, vol. 114, no. 14, pp. 6949–6985.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang, D. and Astruc, D., Molecules, 2014, vol. 19, no. 4, pp. 4635–4653.CrossRefPubMedGoogle Scholar
  14. 14.
    Podolean, I., Negoi, A., Candu, N., Tudorache, M., Parvulescu, V.I., and Coman, S.M., Top. Catal., 2014, vol. 57, nos. 17–20, pp. 1463–1469.Google Scholar
  15. 15.
    Zhang, C., Wang, H., Liu, F., Wang, L., and He, H., Cellulose, 2013, vol. 20, no. 1, pp. 127–134.CrossRefGoogle Scholar
  16. 16.
    Zhang, J., Wu, S.-B., and Liu, Y., Energy Fuels, 2014, vol. 28, no. 7, pp. 4242–4246.CrossRefGoogle Scholar
  17. 17.
    Manaenkov, O.V., Mann, J.J., Kislitza, O.V., Losovyj, Ya., Stein, B.D., Morgan, D.G., Pink, M., Lependina, O.L., Shifrina, Z.B., Matveeva, V.G., Sulman, E.M., and Bronstein, L.M., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 33, pp. 21285–21293.CrossRefPubMedGoogle Scholar
  18. 18.
    Manaenkov, O.V., Matveeva, V.G., Sinitzyna, P.V., Ratkevich, E.A., Kislitza, O.V., Doluda, V.Yu., Sulman, E.M., Sidorov, A.I., Mann, J.J., Losovyj, Ya., and Bronstein, L.M., Chem. Eng. Trans., 2016, vol. 52, pp. 637–642.Google Scholar
  19. 19.
    Wu, C.-T., Qu, J., Elliott, J., Yu, K.M.K., and Tsang, S.C.E., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 23, pp. 9043–9050.CrossRefPubMedGoogle Scholar
  20. 20.
    Release on the ionization constant of H2O 2007. International Association for the Properties of Water and Steam Official Website. Ionization.pdf /. Cited August 14, 2017.Google Scholar
  21. 21.
    Xiao, Z., Jin, S., Pang, M., and Liang, C., Green Chem., 2013, vol. 15, no. 4, pp. 891–895.CrossRefGoogle Scholar
  22. 22.
    Nadirov, N.K. and Slutskin, R.L., Kataliticheskoe gidrirovanie i gidrogenoliz uglevodov (Catalytic Hydrogenation and Hydrogenolysis of Hydrocarbons), Moscow: Khimiya, 1976.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Tver’ State Technical UniversityTver’Russia

Personalised recommendations