Catalysis in Industry

, Volume 10, Issue 3, pp 237–243 | Cite as

Studying the Effect of Magnesium on the Activity of a Deep Oxidation Catalyst for a Fluidized Bed in Methane and CO Oxidation Reactions

  • Yu. V. DubininEmail author
  • N. A. Tsereshko
  • A. A. Saraev
  • O. A. Bulavchenko
  • V. A. Yakovlev


A comparative study is performed on the activity of industrial and laboratory samples of CuO/Al2O3, MgO-Cr2O3/Al2O3, CuO-Cr2O3/Al2O3, and CuO/Al2O3MgO-Cr2O3 catalysts under fluidized bed conditions in model CO and CH4 oxidation reactions. For the combustion of gaseous fuels and gas mixtures (including low-percentage methane mixtures), aluminum–copper–magnesium–chromium catalysts are found to be the ones most promising. Studying their activity in the model reaction of methane oxidation while varying the content of magnesium in the composition of this catalytic system shows that the optimum magnesium content lies in the range of 1–2 wt %. The metals on the surfaces of these samples are found to be in the most stable states: Cu2+, Cr3+, Mg2+, and Al3+. The composition and textural and strength characteristics of the samples are studied by physicochemical means (BET, XPS, XRD, and X-ray fluorescence analysis).


catalysts deep oxidation methane CO fluidized bed flow-circulating mode 



This work was supported by the Russian Science Foundation, project no. 17-73-30032.


  1. 1.
    Dubinin, Yu.V., Yazykov, N.A., Simonov, A.D., Yakovlev, V.A., Saraev, A.A., Kaichev, V.V., Bulavchenko, O.A., Ishchenko, A.V., Mokrinskii, V.V., and Ermakov, D.Yu., Katal. Prom-sti, 2013, no. 4, pp. 68–76.Google Scholar
  2. 2.
    Popovskii, V.V., Kinet. Katal., 1972, no. 5, pp. 1190–1203.Google Scholar
  3. 3.
    Ismagilov, Z.R., Shkrabina, R.A., and Koryabkina, N.A., Ekologiya. Ser. Anal. Obz. Mirovoi Lit., 1998, no. 50, pp. 1–80.Google Scholar
  4. 4.
    van der Brand, J., Snijders, P.C., Sloof, W.G., Terryn, H., and de Wit, J.H.W., J. Phys. Chem. B, 2004, vol. 108, no. 19, pp. 6017–6024.CrossRefGoogle Scholar
  5. 5.
    Mendialdua, J., Casanova, R., Rueda, F., Rodríguez, A., Quiñones, J., Alarcón, L., Escalante, E., Hoffmann, P., Taebi, I., and Jalowiecki, L., J. Mol. Catal. A: Chem., 2005, vol. 228, nos. 1–2, pp. 151–162.Google Scholar
  6. 6.
    Kosova, N., Devyatkina, E., Slobodyuk, A., and Kaichev, V., Solid State Ionics, 2008, vol. 179, nos. 27–32, pp. 1745–1749.Google Scholar
  7. 7.
    Rahman, A., Mohamed, M.H., Ahmed, M., and Aitani, A.M., Appl. Catal., A, 1995, vol. 121, no. 2, pp. 203–216.Google Scholar
  8. 8.
    Pradier, C.M., Rodrigues, F., Marcus, P., Landau, M.V., Kaliy, M.L., Gutman, A., and Herskowitz, M., Appl. Catal., B, 2000, vol. 27, no. 2, pp. 73–85.CrossRefGoogle Scholar
  9. 9.
    Wang, S., Murata, K., Hayakawa, T., Hamakawa, S., Suzuki, K., Appl. Catal., A, 2000, vol. 196, no. 1, pp. 1–8.Google Scholar
  10. 10.
    Yim, S.D. and Nam, I.-S., J. Catal., 2004, vol. 221, no. 2, pp. 601–611.CrossRefGoogle Scholar
  11. 11.
    Wichterlová, B., Krajčíková, L., Tvarůžková, Z., and Beran, S., J. Chem. Soc., Faraday Trans. 1, 1984, vol. 80, no. 10, pp. 2639–2645.CrossRefGoogle Scholar
  12. 12.
    Allen, G. C., Harris, S.J., Jutson, J.A., and Dyke, J.M., Appl. Surf. Sci., 1989, vol. 37, no. 1, pp. 111–134.CrossRefGoogle Scholar
  13. 13.
    McIntyre, N.S. and Cook, M.G., Anal. Chem., 1975, vol. 47, no. 13, pp. 2208–2213.CrossRefGoogle Scholar
  14. 14.
    Strohmeier, B.R., Leyden, D.E., Field, R.S., and Hercules, D.M., J. Catal., 1985, vol. 94, no. 2, pp. 514–530.CrossRefGoogle Scholar
  15. 15.
    Otamiri, J.C., Andersson, S. L. T., and Andersson, A., Appl. Catal., 1990, vol. 65, no. 1, pp. 159–174.CrossRefGoogle Scholar
  16. 16.
    Wöllner, A., Lange, F., Schmelz, H., and Knözinger, H., Appl. Catal., A, 1993, vol. 94, no. 2, pp. 181–203.Google Scholar
  17. 17.
    Poulston, S., Parlett, P.M., Stone, P., and Bowker, M., Surf. Interface Anal., 1996, vol. 24, no. 12, pp. 811–820.CrossRefGoogle Scholar
  18. 18.
    Batista, J., Pintar, A., Mandrino, D., Jenko, M., and Martin, V., Appl. Catal., A, 2001, vol. 206, no. 1, pp. 113–124.Google Scholar
  19. 19.
    Bukhtiyarov, V.I., Kaichev, V.V. and Prosvirin, I.P., Top. Catal., 2005, vol. 32, nos. 1–2, pp. 3–15.Google Scholar
  20. 20.
    Richter, M., Fait, M.J.G., Eckelt, R., Scneider, M., Radnik, J., Heidemann, D., and Fricke, R., J. Catal., 2007, vol. 245, no. 1, pp. 11–24.CrossRefGoogle Scholar
  21. 21.
    Ardizzone, S., Bianchi, C.L., Fadoni, M., and Vercelli, B., Appl. Surf. Sci., 1997, vol. 119, nos. 3–4, pp. 253–259.Google Scholar
  22. 22.
    Huang, H.-H., Shih, W.-Ch., and Lai, Ch.-H., Appl. Phys. Lett., 2010, vol. 96, p. 193505. doi 10.1063/1.3429024CrossRefGoogle Scholar
  23. 23.
    Pakharukov, I.Yu., Sovremennaya tekhnika kataliticheskogo eksperimenta: Uchebno-metodicheskoe posobie (Contemporary Technique of Catalytic Experiment: Study Guide), Novosibirsk: NGU, 2011.Google Scholar
  24. 24.
    Bobrov, N.N., in Promyshlennyi Kataliz v lektsiyakh (Lectures on Industrial Catalysis), Moscow: Kalvis, 2006, no. 3, pp. 41–76.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Dubinin
    • 1
    Email author
  • N. A. Tsereshko
    • 1
  • A. A. Saraev
    • 1
  • O. A. Bulavchenko
    • 1
  • V. A. Yakovlev
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations