Catalysis in Industry

, Volume 10, Issue 3, pp 244–250 | Cite as

Formation of Carbon from High-Molecular Hydrocarbons on Iron Subgroup Metals on the Sibunite Carbon Support

  • V. V. ChesnokovEmail author
  • A. S. Chichkan’Email author
  • V. N. ParmonEmail author


The properties of iron subgroup metals (Fe, Co, Ni) on a mesoporous carbon Sibunite support during the formation of carbon in the catalytic pyrolysis of high-molecular alkanes (hexane, undecane, and hexadecane) were studied. In the case of the NiO/Sibunite catalyst, the rate of carbon formation at temperatures of 500–600оС decreased in the series hexane > undecane > hexadecane. Carbon is deposited in the form of carbon nanofibers. The activity series of reduced catalysts in carbon formation was determined: 10%NiО/Sibunite > 10%CoО/Sibunite > 10%Fe2О3/Sibunite. The morphology of carbon that formed on the 10%CoО/Sibunite catalyst depends on the particle size of the active component: multiwalled carbon nanotubes (MCNTs) grow on particles of 10–30 nm, and carbon nanofibers grow on particles larger than 30 nm. The X-ray diffraction studies of Fe2O3/Sibunite after the reaction showed that the active component can be in the form of metal or iron carbide, the fraction of each phase in the catalyst depending on the particle size of the active phase. For particles of 10–30 nm, iron is in the form of metal, for larger particles, it is in the form of carbide. It was concluded that iron carbide particles are responsible for the formation of carbon nanofibers, and iron particles are responsible for the formation of MCNTs.


hexane undecane hexadecane Sibunite catalytic pyrolysis 



This study was financially supported by the Russian Scientific Foundation (project no. 17-73-30032).


  1. 1.
    Surkov, V.G., Pevneva, G.S., and Golovko, A.K., Neftepererab. Neftekhim., 2015, no. 12, pp. 6–10.Google Scholar
  2. 2.
    Kopytov, M.A., Golovko, A.K., Kirik, N.P., and Anshits, A.G., Solid Fuel Chem., 2013, vol. 47, no. 2, pp. 114–119.CrossRefGoogle Scholar
  3. 3.
    Sharypov, V.I., Beregovtsova, N.G., Baryshnikov, S.V., and Kuznetsov, B.N., Khim. Interes. Ust. Razv., 1997, no. 3, pp. 287–291.Google Scholar
  4. 4.
    Telyashev, E.G., Zhurkin, O.P., Vezirov, R.R., Larionov, S.L., and Imashev, U.B., Khim. Tverd. Topl. 1991, no. 3, pp. 57–62.Google Scholar
  5. 5.
    Kopytov, M.A. and Golovko, A.K., Izv. Tomsk. Politech. Univ., 2009, vol. 315, no. 3, pp. 83–86.Google Scholar
  6. 6.
    RF Patent 2375410, Byull. Izobret., 2009, no. 34, p. 5.Google Scholar
  7. 7.
    RF Patent 2375412, Byull. Izobret., 2009, no. 34, p. 5.Google Scholar
  8. 8.
    RF Patent 2442648, Byull. Izobret., 2012, no. 5, p. 6.Google Scholar
  9. 9.
    Fomenko, E.V., Kondratenko, E.V., Salanov, A.N., Bajukov, O.A., Talyshev, A.A., Maksimov, N.G., Nizov, V.A., and Anshits, A.G., Catal. Today, 1998, vol. 42, no. 3, pp. 267–272.CrossRefGoogle Scholar
  10. 10.
    Fomenko, E.V., Kondratenko, E.V., Sharonova, O.M., Plekhanov, V.P., Koshcheev, S.V., Boronin, A.I., Salanov, A.N., Bajukov, O.A., and Anshits, A., G, Catal. Today, 1998, vol. 42, no. 3, pp. 273–277.CrossRefGoogle Scholar
  11. 11.
    Anshits, N.N., Bayukov, O.A., Eremin, E.V., Solov’ev, L.A., Rabchevskiĭ, E.V., and Anshits, A.G., Phys. Solid State, 2010, vol. 52, no. 6, pp. 1188–1192.CrossRefGoogle Scholar
  12. 12.
    Kelemen, S.R., Siskin, M., Gorbaty, M.L., Ferru-ghelli, D.T., Kwiatek, P.J., Brown, L.D., Eppig, C.P., and Kennedy, R.J., Energy Fuels, 2007, vol. 21, no. 2, pp. 927–940.CrossRefGoogle Scholar
  13. 13.
    USSR Inventor’s Certificate 2042425, Byull. Izobret., 1995, no. 24.Google Scholar
  14. 14.
    RF Patent 2086502, Byull. Izobret., 1997, no. 22.Google Scholar
  15. 15.
    RF Patent 2116829, Byull. Izobret., 1998, no. 22.Google Scholar
  16. 16.
    Chesnokov, V.V. and Buyanov, R.A., Russ. Chem. Rev., 2000, vol. 69, no. 7, pp. 623–638.CrossRefGoogle Scholar
  17. 17.
    Buyanov, R.A. and Chesnokov, V.V., Katal. Prom-sti, 2006, no. 2, pp. 3–1.Google Scholar
  18. 18.
    Yang, Y., Liu, X., Xu, B., and Li, T., Carbon, 2006, vol. 44, no. 9, pp. 1661–1664.CrossRefGoogle Scholar
  19. 19.
    Maksimova, N.I., Krivoruchko, O.P., Mestl, G., Zaikovskii, V.I., Chuvilin, A.L., Salanov, A.N., and Burgina, E.B., J. Mol. Catal. A: Chem., 2000, vol. 158, no. 1, pp. 301–307.CrossRefGoogle Scholar
  20. 20.
    Blank, V.D., Alshevskiy, Yu.L., Belousov, Yu.A., Kazennov, N.V., Perezhogin, I.A., and Kulnitskiy, B.A., Nanotechnology, 2006, vol. 17, no. 8, pp. 1862–1866.CrossRefGoogle Scholar
  21. 21.
    Takahashi, Y., Fujita, H., Lin, W.-H., Li, Y.-Y., Fujii, T., and Sakoda, A., Chem. Mater. Sci., 2009, vol. 16, p. 57.Google Scholar
  22. 22.
    Westrich, T.A., Chen, X., and Schwank, J.W., Appl. Catal., A, 2010, vol. 386, nos. 1–2, pp. 83–93.Google Scholar
  23. 23.
    US Patent 4978649, 1990.Google Scholar
  24. 24.
    Plaksin, G.V., Khim. Interes. Ust. Razv., 2001, vol. 9, no. 5, pp. 609–620.Google Scholar
  25. 25.
    Mishakov, I.V., Chesnokov, V.V., Buyanov, R.A., and Pakhomov, N.A., Kinet. Catal., 2001, vol. 42, no. 4, pp. 543–548.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations