Advertisement

Catalysis in Industry

, Volume 10, Issue 2, pp 166–172 | Cite as

Developing Effective Cobalt Catalysts for Hydrogen-Generating Solid-State NaBH4 Composite

  • O. V. Netskina
  • O. V. Komova
  • V. I. Simagina
Photo- and Electrocatalysis

Abstract

Hydrogen-generating solid-state NaBH4 composite are promising systems for storing and transporting hydrogen intended for use in low-temperature proton-exchange membrane fuel cells. Catalysts are introduced into the composites to ensure the generation of hydrogen at ambient temperatures. In this work, the effect of the synthesis conditions for cobalt catalyst on the gas generation rate is analyzed. It is found that the efficiency of hydrogen generation depends on the nature of the cobalt salt and pH of the aqueous solution of the salt in which the active component precursor is reduced under the action of sodium borohydride because these factors determine the composition, degree of dispersion, and magnetic behavior of the cobalt systems. It is found that the highest rate of gas generation—505 cm3/min per gram of the composite with a hydrogen content of 8.4 wt %—is observed for a sample reduced with sodium borohydride in a hydrochloric acid solution of cobalt chloride with a pH of 1.3. The results can be used to develop effective inexpensive cobalt catalysts for the production of hydrogen from pelletized solid-state NaBH4 composite.

Keywords

hydrogen-generating composite sodium borohydride hydrolysis kinetics hydrogen heterogeneous catalysis cobalt catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okumus, E., San, F.G.B., Okur, O., Turk, B.E., Cengelci, E., Kilic, M., Karadag, C., Cavdar, M., Turkmen, A., and Yazici, M.S., Int. J. Hydrogen Energy, 2017, vol. 42, no. 4, pp. 2691–2697.CrossRefGoogle Scholar
  2. 2.
    Nunes, H.X., Ferreira, M.J.F., Rangel, C.M., and Pinto, A.M.F.R., Int. J. Hydrogen Energy, 2016, vol. 41, no. 34, pp. 15426–15432.CrossRefGoogle Scholar
  3. 3.
    Li, S.-C. and Wang, F.-C., Int. J. Hydrogen Energy, 2016, vol. 41, no. 4, pp. 3038–3051.CrossRefGoogle Scholar
  4. 4.
    Wang, L., Li, Z., Zhang, Y., Zhang, T., and Xie, G., J. Alloys Compd., 2017, vol. 702, pp. 649–658.CrossRefGoogle Scholar
  5. 5.
    Netskina, O.V., Komova, O.V., and Simagina, V.I., Russ. J. Appl. Chem., 2016, vol. 89, no. 10, pp. 1625–1631.CrossRefGoogle Scholar
  6. 6.
    Wei, L., Ma, M., Lu, Y., Zhang, S., Gao, J., and Dong, X., Funct. Mater. Lett., 2017, vol. 10, no. 5, p. 1750065.CrossRefGoogle Scholar
  7. 7.
    Eugénio, S., Demirci, U.B., Silva, T.M., Carmezim, M.J., and Montemor, M.F., Int. J. Hydrogen Energy, 2016, vol. 41, no. 20, pp. 8438–8448.CrossRefGoogle Scholar
  8. 8.
    Park, D. and Kim, T., J. Nanosci. Nanotechnol., 2016, vol. 16, no. 2, pp. 1740–1743.CrossRefGoogle Scholar
  9. 9.
    Oh, T.H., Gang, B.G., Kim, H., and Kwon, S., Energy, 2015, vol. 90, part. 1, pp. 1163–1170.CrossRefGoogle Scholar
  10. 10.
    Yang, J., Cheng, F., Liang, J., and Chen, J., Int. J. Hydrogen Energy, 2011, vol. 36, no. 2, pp. 1411–1417.CrossRefGoogle Scholar
  11. 11.
    Dai, H.-B., Liang, Y., Wang, P., and Cheng, H.-M., J. Power Sources, 2008, vol. 177, no. 1, pp. 17–23.CrossRefGoogle Scholar
  12. 12.
    Kojima, Y., Suzuki, K.-I., Fukumoto, K., Kawai, Y., Kimbara, M., Nakanishi, H., and Matsumoto, S., J. Power Sources, 2004, vol. 125, no. 1, pp. 22–26.CrossRefGoogle Scholar
  13. 13.
    Marchionni, A., Bevilacqua, M., Filippi, J., Folliero, M.G., Innocenti, M., Lavacchi, A., Miller, H.A., Pagliaro, M.V., and Vizza, F., J. Power Sources, 2015, vol. 299, pp. 391–397.CrossRefGoogle Scholar
  14. 14.
    Minkina, V.G., Shabunya, S.I., Kalinin, V.I., Martynenko, V.V., and Smirnova, A.L., Int. J. Hydrogen Energy, 2012, vol. 37, no. 4, pp. 3313–3318.CrossRefGoogle Scholar
  15. 15.
    Minkina, V.G., Shabunya, S.I., Kalinin, V.I., Martynenko, V.V., and Smirnova, A.L., Int. J. Hydrogen Energy, 2008, vol. 33, no. 20, pp. 5629–5635.CrossRefGoogle Scholar
  16. 16.
    Netskina, O.V., Komova, O.V., Mukha, S.A., and Simagina, V.I., Catal. Commun., 2016, vol. 85, pp. 9–12.CrossRefGoogle Scholar
  17. 17.
    Netskina, O.V., Komova, O.V., Simagina, V.I., Odegova, G.V., Prosvirin, I.P., and Bulavchenko, O.A., Renewable Energy, 2016, vol. 99, pp. 1073–1081.CrossRefGoogle Scholar
  18. 18.
    Liu, C.-H., Chen, B.-H., Hsueh, C.-L., Ku, J.-R., and Tsau, F., J. Power Sources, 2010, vol. 195, no. 12, pp. 3887–3892.CrossRefGoogle Scholar
  19. 19.
    Liu, C.-H., Kuo, Y.-C., Chen, B.-H., Hsueh, C.-L., Hwang, K.-J., Ku, J.-R., Tsau, F., and Jeng, M.-S., Int. J. Hydrogen Energy, 2010, vol. 35, no. 9, pp. 4027–4040.CrossRefGoogle Scholar
  20. 20.
    Liu, B.H., Li, Z.P., and Suda, S., J. Alloys Compd., 2009, vol. 468, nos. 1–2, pp. 493–498.CrossRefGoogle Scholar
  21. 21.
    Netskina, O.V., Ozerova, A.M., Komova, O.V., Odegova, G.V., and Simagina, V.I., Catal. Today, 2015, vol. 245, pp. 86–92.CrossRefGoogle Scholar
  22. 22.
    Hsueh, C.-L., Liu, C.-H., Chen, B.-H., Lee, M.-S., Chen, C.-Y., Lu, Y.-W., Tsau, F., and Ku, J.-R., J. Power Sources, 2011, vol. 196, no. 7, pp. 3530–3538.CrossRefGoogle Scholar
  23. 23.
    Gislon, P., Monteleone, G., and Prosini, P.P., Int. J. Hydrogen Energy, 2009, vol. 34, no. 2, pp. 929–937.CrossRefGoogle Scholar
  24. 24.
    Ferreira, M.J.F., Gales, L., Fernandes, V.R., Rangel, C.M., and Pinto, A.M.F.R., Int. J. Hydrogen Energy, 2010, vol. 35, no. 18, pp. 9869–9878.CrossRefGoogle Scholar
  25. 25.
    Kim, J.-H., Choi, K.-H., and Choi, Y.S., Int. J. Hydrogen Energy, 2010, vol. 35, no. 9, pp. 4015–4019.CrossRefGoogle Scholar
  26. 26.
    Duke, B.J., Gulbert, J.R., and Read, I.A., J. Chem. Soc. A, 1964, pp. 540–542.Google Scholar
  27. 27.
    Simagina, V.I., Ozerova, A.M., Komova, O.V., Odegova, G.V., Kellerman, D.G., Fursenko, R.V., Odintsov, E.S., and Netskina, O.V., Catal. Today, 2015, vol. 242, part A, pp. 221–229.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Netskina
    • 1
  • O. V. Komova
    • 1
  • V. I. Simagina
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations