Advertisement

Catalysis in Industry

, Volume 10, Issue 2, pp 173–180 | Cite as

Rice Husk Derived Micro-Mesoporous Carbon Materials as Active Components of Supercapacitor Electrodes

  • M. V. Lebedeva
  • P. M. Yeletsky
  • A. B. Ayupov
  • A. N. Kuznetsov
  • E. N. Gribov
  • V. N. Parmon
Photo- and Electrocatalysis
  • 19 Downloads

Abstract

Activated carbon materials (CM) were prepared from rice husk carbonized in the fluidized catalysts bed reactor. Textural characteristics of CM were studied by the adsorption of nitrogen at 77 K. Variation of synthesis conditions (conditions of carbonization and following activation) allowed to obtain materials with specific BET surface area from 440 to 2290 m2/g. Utilization of sodium or potassium carbonates results in the BET surface area up to 1200 m2/g. Activation by hydroxides of sodium or potassium yields the samples with the more developed surface up to 2290 m2/g. Electrochemical properties and capacitive characteristics were examined by cyclic voltammetry and chronopotentiometry in galvanostatic mode in aqueous electrolyte 1 M H2SO4 and ionic liquid BMIMBF4. It was shown, that at low charge/discharge rate (0.2 А/g) gravimetric capacitance depends linearly on specific surface of CM and does not depend on electrolyte nature. Insignificant (in the case of 1 М H2SO4) and significant (in the case of ionic liquid) decrease of specific capacitance is observed at high rates of charge/discharge (2 А/g), which is explained by influence of porous structure.

Keywords

activated carbon materials rice husk carbonization supercapacitors ionic liquids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burke, A., Electrochim. Acta, 2007, vol. 53, no. 3, pp. 1083–1091.CrossRefGoogle Scholar
  2. 2.
    Conte, M., Fuel Cells, 2010, vol. 10, no. 5, pp. 806–818.CrossRefGoogle Scholar
  3. 3.
    Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., and Zhang, L., Int. J. Hydrogen Energy, 2009, vol. 34, no. 11, pp. 4889–4899.CrossRefGoogle Scholar
  4. 4.
    Ito, E., Mozia, S., Okuda, M., Nakano, T., Toyoda, M., and Inagaki, M., New Carbon Mater., 2007, vol. 22, no. 4, pp. 321–326.CrossRefGoogle Scholar
  5. 5.
    Bichat, M.P., Raymundo-Piñero, E., and Béguin, F., Carbon, 2010, vol. 48, no. 15, pp. 4351–4361.CrossRefGoogle Scholar
  6. 6.
    Long, C., Jiang, L., Wu, X., Jiang, Y., Yang, D., Wang, C., Wei, T., and Fan, Z., Carbon, 2015, vol. 93, pp. 412–420.CrossRefGoogle Scholar
  7. 7.
    Peng, C., Yan, X.-B., Wang, R.-T., Lang, J.-W., Ou, Y.-J., and Xue, Q.-J., Electrochim. Acta, 2013, vol. 87, pp. 401–408.CrossRefGoogle Scholar
  8. 8.
    Bleda-Martínez, M.J., Maciá-Agulló, A., Lozano-Castelló, D., Morallón, E., Cazorla-Amorósa, D., and Linares-Solano, A., Carbon, 2005, vol. 43, no. 13, pp. 2677–2684.CrossRefGoogle Scholar
  9. 9.
    Raymundo-Piñero, E., Kierzek, K., Machnikowski, J., and Béguin, F., Carbon, 2006, vol. 44, no. 12, pp. 2498–2507.CrossRefGoogle Scholar
  10. 10.
    Alonso, A., Ruiz, V., Blanco, C., Santamaría, R., Granda, M., Menéndez, R., and de Jager, S.G.E., Carbon, 2006, vol. 44, no. 3, pp. 441–446.CrossRefGoogle Scholar
  11. 11.
    Kim, Y.-J., Horie, Y., Matsuzawa, Y., Ozaki, S., Endo, M., and Dresselhaus, M.S., Carbon, 2004, vol. 42, nos. 12–13, pp. 2423–2432.CrossRefGoogle Scholar
  12. 12.
    Li, Q.-Y., Wang, H.-Q., Dai, Q.-F., Yang, J.-H., and Zhong, Y.-L., Solid State Ionics, 2008, vol. 179, nos. 7–8, pp. 269–273.CrossRefGoogle Scholar
  13. 13.
    Jurewicz, K., Frackowiak, E., and Béguin, F., Appl. Phys. A: Mater. Sci. Process., 2004, vol. 78, no. 7, pp. 981–987.CrossRefGoogle Scholar
  14. 14.
    Vix-Guterl, C., Frackowiak, E., Jurewicz, K., Friebeb, M., Parmentier, J., and Béguin, F., Carbon, 2005, vol. 43, no. 6, pp. 1293–1302.CrossRefGoogle Scholar
  15. 15.
    Morishita, T., Soneda, Y., Tsumura, T., and Inagaki, M., Carbon, 2006, vol. 44, no. 12, pp. 2360–2367.CrossRefGoogle Scholar
  16. 16.
    Lu, X., Dou, H., Gao, B., Yuan, C., Yang, S., Hao, L., Shen, L., and Zhang, X., Electrochim. Acta, 2011, vol. 56, no. 14, pp. 5115–5121.CrossRefGoogle Scholar
  17. 17.
    Zhang, L.L., Wei, T., Wang, W., and Zhao, X.S., Microporous Mesoporous Mater., 2009, vol. 123, nos. 1–3, pp. 260–267.CrossRefGoogle Scholar
  18. 18.
    Wang, G., Ling, Y., Qian, F., Yang, X., Liu, X.-X., and Li, Y., J. Power Sources, 2011, vol. 196, no. 11, pp. 5209–5214.CrossRefGoogle Scholar
  19. 19.
    Rychagov, A.Yu., Vol’fkovich, Yu.M., Vorotyntsev, M.A., Kvacheva, L.D., Konev, D.V., Krestinin, A.V., Kryazhev, Yu.G., Kuznetsov, V.L., Kukushkina, Yu.A., Mukhin, V.M., Sokolov, V.V., and Chervonobrodov, S.P., Elektrokhim. Energ., 2012, vol. 12, no. 4, pp. 167–180.Google Scholar
  20. 20.
    Bakhmatyuk, B.P. and Kurepa, A.S., Elektrokhim. Energ., 2011, vol. 11, no. 4, pp. 206–212.Google Scholar
  21. 21.
    Atamanyuk, I.N., Vervikishko, D.E., Grigorenko, A.V., Sametov, A.A., Shkol’nikov, E.I., and Yanilkin, I.V., Elektrokhim. Energ., 2014, vol. 14, no. 1, pp. 3–10.Google Scholar
  22. 22.
    Liu, M.-C., Kong, L.-B., Zhang, P., Luo, Y.-C., and Kang, L., Electrochim. Acta, 2012, vol. 60, pp. 443–448.CrossRefGoogle Scholar
  23. 23.
    Wang, K., Zhao, N., Lei, S., Yan, R., Tian, X., Wang, J., Song, Y., Xu, D., Guo, Q., and Liu, L., Electrochim. Acta, 2015, vol. 166, pp. 1–11.CrossRefGoogle Scholar
  24. 24.
    Redondo, E., Carretero-González, J., Goikolea, E., Ségalini, J., and Mysyk, R., Electrochim. Acta, 2015, vol. 160, pp. 178–184.CrossRefGoogle Scholar
  25. 25.
    Eletskii, P.M., Yakovlev, V.A., Fenelonov, V.B., and Parmon, V.N., Kinet. Catal., 2008, vol. 49, no. 5, pp. 708–719.CrossRefGoogle Scholar
  26. 26.
    Larichev, Yu.V., Yeletsky, P.M., and Yakovlev, V.A., J. Phys. Chem. Solids, 2015, vol. 87, pp. 58–63.CrossRefGoogle Scholar
  27. 27.
    Yeletsky, P.M., Yakovlev, V.A., Mel’gunov, M.S., and Parmon, V.N., Microporous Mesoporous Mater., 2009, vol. 121, nos. 1–3, pp. 34–40.CrossRefGoogle Scholar
  28. 28.
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069.Google Scholar
  29. 29.
    Mel’gunov, M.S. and Ayupov, A.B., Microporous Mesoporous Mater., 2017, vol. 243, pp. 147–153.CrossRefGoogle Scholar
  30. 30.
    Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, New York: Wiley, 1988.Google Scholar
  31. 31.
    Dullius, J.E.L., Suarez, P.A.Z., Einloft, S., de Souza, R.F., Dupont, J., Fischer, J., and De Cian, A., Organometallics, 1998, vol. 17, no. 5, pp. 815–819.CrossRefGoogle Scholar
  32. 32.
    Pell, W.G., Conway, B.E., and Marincic, N., J. Electroanal. Chem., 2000, vol. 491, nos. 1–2, pp. 9–21.CrossRefGoogle Scholar
  33. 33.
    Pell, W.G., Conway, B.E., Adams, W.A., and de Oliveira, J., J. Power Sources, 1999, vol. 80, nos. 1–2, pp. 134–141.CrossRefGoogle Scholar
  34. 34.
    Stoller, M.D. and Ruoff, R.S., Energy Environ. Sci., 2010, vol. 3, no. 9, pp. 1294–1301.CrossRefGoogle Scholar
  35. 35.
    Van, K.L. and Thi, T.T.L., Prog. Nat. Sci.: Mater. Int., 2014, vol. 24, no. 3, pp. 191–198.CrossRefGoogle Scholar
  36. 36.
    Kumagai, S. and Tashima, D., Biomass Bioenergy, 2015, vol. 83, pp. 216–223.CrossRefGoogle Scholar
  37. 37.
    Gao, Y., Li, L., Jin, Y., Wang, Y., Yuan, C., Wei, Y., Chen, G., Ge, J., and Lu, H., Appl. Energy, 2015, vol. 153, pp. 41–47.CrossRefGoogle Scholar
  38. 38.
    Jiang, J., J. Electrochem. Soc., 2017, vol. 164, no. 8, pp. H5043–H5048.CrossRefGoogle Scholar
  39. 39.
    Lockett, V., Sedev, R., Ralston, J., Horne, M., and Rodopoulos, T., J. Phys. Chem. C, 2008, vol. 112, no. 19, pp. 7486–7495.CrossRefGoogle Scholar
  40. 40.
    Zheng, J., Moganty, S.S., Goonetilleke, P.C., Baltus, R.E., and Roy, D., J. Phys. Chem. C, 2011, vol. 115, no. 15, pp. 7527–7537.CrossRefGoogle Scholar
  41. 41.
    Wang, X., Zhou, H., Sheridan, E., Walmsley, J.C., Ren, D., and Chen, D., Energy Environ. Sci., 2016, vol. 9, no. 1, pp. 232–239.CrossRefGoogle Scholar
  42. 42.
    Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., and Taberna, P.L., Science, 2006, vol. 313, no. 5794, pp. 1760–1763.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Lebedeva
    • 1
  • P. M. Yeletsky
    • 1
  • A. B. Ayupov
    • 1
    • 2
  • A. N. Kuznetsov
    • 1
    • 2
  • E. N. Gribov
    • 1
    • 2
  • V. N. Parmon
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis (BIC)NovosibirskRussia
  2. 2.Novosibirsk State University (NSU)NovosibirskRussia

Personalised recommendations