Catalysis in Industry

, Volume 10, Issue 2, pp 142–151 | Cite as

Developing Ways of Obtaining Quality Hydrolyzates Based on Integrating Catalytic Peroxide Delignification and the Acid Hydrolysis of Birch Wood

  • B. N. KuznetsovEmail author
  • N. V. Chesnokov
  • O. V. Yatsenkova
  • I. G. Sudakova
  • A. M. Skripnikov
  • N. G. Beregovtsova
  • V. I. Sharypov


Traditional processes of acid-catalyzed hydrolysis of wood are ineffective due to the low quality of formed glucose solutions contaminated with impurities that inhibit fermentation of glucose to ethanol. This problem grows during the hydrolysis of birch wood containing large amounts of hemicellulose. This work proposes producing quality glucose solutions using sulfuric acid (H2SO4, 80%) catalyzed hydrolysis at 25°C the cellulosic products formed during the catalytic peroxide delignification of birch wood. It is established that the composition of cellulosic products strongly affects the contents of glucose, xylose, and impurities inhibiting the enzymatic synthesis of bioethanol: furfural, 5-hydroxymethyl furfural, and levulinic acid. High yields (80.4–83.5 wt %) of glucose are achieved using cellulosic products produced by integrating the processes of sulfuric acid hydrolysis of hemicelluloses from birch wood and peroxide delignification of prehydrolyzed wood in the presence of catalysts: 2% H2SO4 and 1% TiO2. Concentration of inhibitors of enzymatic processes in these hydrolyzates is below the allowable limits. Hydrolyzates with maximum glucose content (86.4–88.5 wt %) and minimum concentration of inhibiting impurities produced by acid hydrolysis of cellulosic products treated with an 18% solution of NaOH. Gas chromatography, HPLC, and chromato-mass spectrometry are used to analyze the composition of hydrolyzates. Cellulosic products are examined by SEM, XRD, and chemical analysis.


birch wood peroxide delignification catalysts H2SO4 TiO2 cellulosic product acid hydrolysis hydrolyzate composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almeida, J.R.M., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., and Gorwa-Grauslund, M.F., J. Chem. Technol. Biotechnol., 2007, vol. 82, no. 4, pp. 340–349.CrossRefGoogle Scholar
  2. 2.
    Lin, Y. and Tanaka, S., Appl. Microbiol. Biotechnol., 2006, vol. 69, no. 6, pp. 627–642.CrossRefPubMedGoogle Scholar
  3. 3.
    Taherzadeh, M.J. and Karimi, K., BioResources, 2007, vol. 2, no. 3, pp. 472–499.Google Scholar
  4. 4.
    Fengel, D. and Wegener, G., Wood: Chemistry, Ultrustructure, Reactions, Walter de Gruter: Berlin/New York, 1984.Google Scholar
  5. 5.
    Hu, G., Heitmann, J.A., and Rojas, O., BioResources, 2008, vol. 3, no. 1, pp. 270–294.Google Scholar
  6. 6.
    Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.A., and Tarabanko, V.E., Chem. Sustainable Dev., 2005, vol. 13, no. 4, pp. 531–539.Google Scholar
  7. 7.
    Brazdausks, P., Puke, M., Vedernikovs, N., and Kruma, I., Environ. Clim. Technol., 2013, vol. 11, pp. 478–485.Google Scholar
  8. 8.
    Li, H., Saeed, A., Jahan, M.S., Ni, J., and van Heiningen, A., J. Wood Chem. Technol., 2010, vol. 30, no. 1, pp. 48–60.CrossRefGoogle Scholar
  9. 9.
    Amiri, H. and Karimi, K., Ind. Eng. Chem. Res., 2013, vol. 52, no. 33, pp. 11494–11501.CrossRefGoogle Scholar
  10. 10.
    Barana, D., Salanti, A., Orlandi, M., Ali, D.S., and Zoia, L., Ind. Crops Prod., 2016, vol. 86, pp. 31–39.CrossRefGoogle Scholar
  11. 11.
    Singh, D.P. and Trivedi, R.K., Int. J. ChemTech Res., 2013, vol. 5, no. 2, pp. 727–734.Google Scholar
  12. 12.
    Guo, B., Zhang, Y., Yu, G., Lee, W.-H., Jin, Y.-S., and Morgenroth, E., Appl. Biochem. Biotechnol., 2013, vol. 169, no. 4, pp. 1069–1087.CrossRefPubMedGoogle Scholar
  13. 13.
    Bose, S.K., Barber, V.A., Alves, E.F., Kiemle, D.J., Stipanovic, A.J., and Francis, R.C., Carbohydr. Polym., 2009, vol. 78, no. 3, pp. 396–401.CrossRefGoogle Scholar
  14. 14.
    Borrega, M., Nieminen, K., and Sixta, H., BioResources, 2011, vol. 6, no. 2, pp. 1890–1903.Google Scholar
  15. 15.
    Hamelinck, C.N., van Hooijdonk, G., and Faaij, A.P.C., Biomass Bioenergy, 2005, vol. 28, no. 4, pp. 384–410.CrossRefGoogle Scholar
  16. 16.
    Kuznetsov, B.N., Taraban’ko, V.E., and Kuznetsova, S.A., Kinet. Catal., 2008, vol. 49, no. 4, pp. 517–526.CrossRefGoogle Scholar
  17. 17.
    Kuznetsov, B.N., Kuznetsova, S.A., Danilov, V.G., Yatsenkova, O.V., and Petrov, A.V., React. Kinet., Mech. Catal., 2011, vol. 104, no. 2, pp. 337–343.CrossRefGoogle Scholar
  18. 18.
    Kuznetsov, B.N., Sudakova, I.G., Garyntseva, N.V., Djakovitch, L., and Pinel, C., React. Kinet., Mech. Catal., 2013, vol. 110, no. 2, pp. 271–280.CrossRefGoogle Scholar
  19. 19.
    Yang, Z., Kang, H., Guo, Y., Zhuang, G., Bai, Z., Zhang, H., Feng, C., and Dong, Y., Ind. Crops Prod., 2013, vol. 46, pp. 205–209.CrossRefGoogle Scholar
  20. 20.
    Zhao, X., Zhou, Y., and Liu, D., Bioresour. Technol., 2012, vol. 105, pp. 160–168.CrossRefPubMedGoogle Scholar
  21. 21.
    Bujang, N., Rodhi, M.N.M., Musa, M., Subari, F., Idris, N., Makhtar, N.S.M., and Hamid, K.H.K., Procedia Eng., 2013, vol. 68, pp. 372–378.CrossRefGoogle Scholar
  22. 22.
    Yatsenkova, O.V., Pen, R.Z., Chudina, A.I., Skripnikov, A.M., and Kuznetsov, B.N., Khim. Tekhnol., 2015, no. 11, pp. 686–693.Google Scholar
  23. 23.
    Shin, S.-J., Park, J.-M., Cho, D.-H., Kim, Y.-H., and Cho, N.-S., J. Korean Wood Sci. Technol., 2009, vol. 37, no. 6, pp. 578–584.Google Scholar
  24. 24.
    Iranmahboob, J., Nadim, F., and Monemi, S., Biomass Bioenergy, 2002, vol. 22, no. 5, pp. 401–404.CrossRefGoogle Scholar
  25. 25.
    Yoon, S.-Y., Han, S.-H., and Shin, S.-J., Energy, 2014, vol. 77, pp. 19–24.CrossRefGoogle Scholar
  26. 26.
    Yatsenkova, O.V., Pen, R.Z., Skripnikov, A.M., Beregovtsova, N.G., and Kuznetsov B.N., Chem. Sustainable Dev., 2016, vol. 24, no. 6, pp. 811–819.Google Scholar
  27. 27.
    Jeffries, T.W., Curr. Opin. Biotechnol., 2006, vol. 17, no. 3, pp. 320–326.CrossRefPubMedGoogle Scholar
  28. 28.
    Wijaya, Y.P., Putra, R.D.D., Widyaya, V.T., Ha, J.-M., Suh, D.J., and Kim, C.S., Bioresour. Technol., 2014, vol. 164, pp. 221–231.CrossRefPubMedGoogle Scholar
  29. 29.
    Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., Templeton, D.W., J. Agric. Food Chem., 2010, vol. 58, no. 16, pp. 9043–9053.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hallac, B.B. and Ragauskas, A.J., Biofuels, Bioprod. Biorefin., 2011, vol. 5, no. 2, pp. 215–225.CrossRefGoogle Scholar
  31. 31.
    Ruiz-Matute, A.I., Hernández-Hernández, O., Rodríguez-Sánchez, S., Sanz, M.L., and Martínez-Castro, I., J. Chromatogr. B, 2011, vol. 879, nos. 17–18, pp. 1226–1240.CrossRefGoogle Scholar
  32. 32.
    Wang, H., Zhang, C., He, H., and Wang, L., J. Environ. Sci., 2012, vol. 24, no. 3, pp. 473–478.CrossRefGoogle Scholar
  33. 33.
    Baram, G.I., in 100 Let khromatografii (100 Years of Chromatography), Moscow: Nauka, pp. 32–45.Google Scholar
  34. 34.
    Kharina, M.V., Emel’yanov, V.M., Ablaev, A.R., Moshkina, N.E., Ibragimova, N.N., and Gorshkova, T.A., Khim. Rastit. Syr’ya, 2014, no. 1, pp. 53–59.Google Scholar
  35. 35.
    Klinke, H.B., Thomsen, A.B., and Ahring, B.K., Appl. Microbiol. Biotechnol., 2004, vol. 66, no. 1, pp. 10–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Garyntseva, N.V., Sudakova, I.G., and Kuznetsov, B.N., Zh. Sib. Fed. Univ., Khim., 2015, vol. 8, no. 3, pp. 422–429.CrossRefGoogle Scholar
  37. 37.
    Hilgert, J., Meine, N., Rinaldi, R., and Schüth, F., Energy Environ. Sci., 2013, vol. 6, no. 1, pp. 92–96.CrossRefGoogle Scholar
  38. 38.
    Hu, H.-Y., Chen, Y.-M., and Zhang, Y.-J., J. Chem. Pharm. Res., 2013, vol. 5, no. 12, pp. 129–134.Google Scholar
  39. 39.
    Carrasquillo-Flores, R., Käldström, M., Schüth, F., Dumesic, J.A., and Rinaldi, R., ACS Catal., 2013, vol. 3, no. 5, pp. 993–997.CrossRefGoogle Scholar
  40. 40.
    Yatsenkova, O.V., Chudina, A.I., Skripnikov, A.M., Chesnokov, N.V., And Kuznetsov, B.N., Zh. Sib. Fed. Univ., Khim., 2015, vol. 8, no. 2, pp. 211–221.CrossRefGoogle Scholar
  41. 41.
    Kim, J.S., Lee, Y.Y., and Kim, T.H., Bioresour. Technol., 2016, vol. 199, pp. 42–48.CrossRefPubMedGoogle Scholar
  42. 42.
    Knill, Ch.J. and Kennedy, J.F., Carbohydr. Polym., 2003, vol. 51, no. 3, pp. 281–300.CrossRefGoogle Scholar
  43. 43.
    Chen, R., Wang, Y.-Z., Liao, Q., Zhu, X., and Xu, T.-F., BMB Rep., 2013, vol. 46, no. 5, pp. 244–251.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Mills, T.Y., Sandoval, N.R., and Gill, R.T., Biotechnol. Biofuels, 2009, vol. 2, pp. 26–36.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Huang, H., Guo, X., Li, D., Liu, M., Wu, J., and Ren, H., Bioresour. Technol., 2011, vol. 102, no. 16, pp. 7486–7493.CrossRefPubMedGoogle Scholar
  46. 46.
    Zha, Y., Westerhuis, J.A., Muilwijk, B., Overkamp, K.M., Nijmeijer, B.M., Coulier, L., Smilde, A.K., and Punt, P.J., BMC Biotechnol., 2014, vol. 14, pp. 22–38.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zha, Y., Muilwijk, B., Coulier, L., and Punt, P.J., J. Bioprocess. Biotech., 2012, vol. 2, no. 1, pp. 112–122.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. N. Kuznetsov
    • 1
    • 2
    Email author
  • N. V. Chesnokov
    • 1
    • 2
  • O. V. Yatsenkova
    • 1
  • I. G. Sudakova
    • 1
  • A. M. Skripnikov
    • 1
  • N. G. Beregovtsova
    • 1
  • V. I. Sharypov
    • 1
  1. 1.Institute of Chemistry and Chemical TechnologySB RAS, FRC KSC SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations