Advertisement

Catalysis in Industry

, Volume 10, Issue 2, pp 159–165 | Cite as

Hydrogenation of (–)-Carvone in Presence of Gold Catalysts: Role of the Support

  • Yu. S. Demidova
  • A. V. Simakov
  • I. L. Simakova
  • D. Yu. Murzin
Biocatalysis
  • 4 Downloads

Abstract

The liquid phase hydrogenation of biomass derived (–)-carvone into industrially valuable dihydrocarvone was studied over monometallic Au catalysts supported on alumina, titania and zirconia, as well as on the mesoporous carbon support Sibunit in methanol as a solvent (100°C, hydrogen pressure 9 bar). It was shown that among the three types of functional groups present in carvone, which can be hydrogenated, namely C=O, conjugated and isolated C=C groups, hydrogenation of the latter was predominant. The catalytic activity was found to depend on the catalyst support type. Under comparative reaction conditions, the carvone conversion increased in the following sequence: Au/C ≪Au/ZrO2 < Au/Al2O3 ≪Au/TiO2. A higher activity of Au catalysts over metal oxides as compared to Au/C can be caused by the presence of acid sites as well as oxygen vacancies in their structure allowing strong adsorption of carvone through its carbonyl moiety. All catalysts supported on oxides showed similar selectivity towards trans- and cis-dihydrocarvone with the ratio between isomers (trans-/cis-isomer) being about 1.8, while this value for Au/C was close to 3.9, which can be related to a much lower carvone conversion in the latter case.

Keywords

unsaturated carbonyl compounds carvone hydrogenation trans-/cis-dihydrocarvone gold alumina titanium dioxide zirconium dioxide carbon Sibunit support effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corma, A., Iborra, S. and Velty, A., Chem. Rev., 2007, vol. 107, no. 6, pp. 2411–2502.CrossRefGoogle Scholar
  2. 2.
    Murzin, D.Yu. and Simakova, I.L., Catal. Ind., 2011, vol. 3, no. 3, pp. 218–249.CrossRefGoogle Scholar
  3. 3.
    Murzin, D.Yu., Demidova, Y., Hasse, B., Etzold, B., and Simakova, I.L., in Producing Fuels and Fine Chemicals from Biomass Using Nanomaterials, Luque, R. and Balu, A.M., Eds., Boca Raton, FL: CRC Press/Taylor & Francis Group, 2013, pp. 267–283.Google Scholar
  4. 4.
    Bernas, H., Simakova, I., Prosvirin, I.P., Mäki-Arvela, P., Leino, R., and Murzin, D.Yu., Catal. Lett., 2012, vol. 142, no. 6, pp. 690–697.CrossRefGoogle Scholar
  5. 5.
    Deliy, I.V., Danilova, I.G., Simakova, I.L., Zaccheria, F., Ravasio, N., and Psaro, R., in Chemical Industries, vol. 123: Catalysis of Organic Reactions, Prunier, M.L., Ed., Boca Raton, FL: CRC Press/Taylor & Francis Group, 2009, pp. 87–92.Google Scholar
  6. 6.
    Mäki-Arvela, P., Kuusisto, J., Mateos Sevilla, E., Simakova, I.L., Mikkola, J.-P., Myllyoja, J., Salmi, T., and Murzin, D.Yu., Appl. Catal., A, 2008, vol. 345, no. 2, pp. 201–212.CrossRefGoogle Scholar
  7. 7.
    Simonov, M.N., Simakova, I.L., and Parmon, V.N., React. Kinet. Catal. Lett., 2009, vol. 97, no. 1, pp. 157–162.CrossRefGoogle Scholar
  8. 8.
    Mäki-Arvela, P., Hájek, J., Salmi, T., and Murzin, D.Yu., Appl. Catal., A, 2005, vol. 292, pp. 1–49.CrossRefGoogle Scholar
  9. 9.
    Yakovleva, M.P., Khasanova, E.F., Talipov, R.F., and Ishmuratov, G.Yu., Vestn. Bashk. Univ., 2009, vol. 14, no. 3(I), pp. 1072–1098.Google Scholar
  10. 10.
    Ishmuratov, G.Yu., Yakovleva, M.P., Valeeva, E.F., Vydrina, V.A., and Tolstikov, G.A., Khim. Rastit. Syr’ya, 2011, vol. 2, pp. 5–26.Google Scholar
  11. 11.
    Fahlbusch, K.-G., Hammerschmidt, F.-J., Panten, J., Pickenhagen, W., Schatkowski, D., Bauer, K., and Surburg, H., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2003, vol. 15, pp. 73–198.Google Scholar
  12. 12.
    Ishmuratov, G.Y., Yakovleva, M.P., Valeeva, E.F., Vydrina, V.A., and Tolstikov, G.A., Russian Journal of Bioorganic Chemistry, 2012, vol. 38, pp. 667–688.CrossRefGoogle Scholar
  13. 13.
    Volcho, K.P., Rogoza, L.N., Salakhutdinov, N.F., and Tolstikov, G.A., Preparativnaya khimiya terpenoidov (Preparative Chemistry of Terpenoids), part 2: Monotsiklicheskie monoterpenoidy: limonen, karvon i ikh proizvodnye (Monocyclic Monoterpenoids: Limonene, Carvone, and Their Derivatives), Novosibirsk: ART-AVENYu, 2008.Google Scholar
  14. 14.
    Klabunovskii, E.I., Godunova, L.F., and Maslova, L.K., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1972, vol. 21, no. 5, pp. 1020–1024.CrossRefGoogle Scholar
  15. 15.
    Claus, P., Appl. Catal., A, 2005, vol. 291, nos. 1–2, pp. 222–229.CrossRefGoogle Scholar
  16. 16.
    Cárdenas-Lizana, F. and Keane, M.A., J. Mater. Sci., 2013, vol. 48, no. 2, pp. 543–564.CrossRefGoogle Scholar
  17. 17.
    Milone, C., Ingoglia, R., Pistone, A., Neri, G., Frusteri, F., and Galvano, S., J. Catal., 2004, vol. 222, no. 2, pp. 348–356.CrossRefGoogle Scholar
  18. 18.
    Milone, C., Crisafulli, C., Ingoglia, R., Schipilliti, L., and Galvano, S., Catal. Today, 2007, vol. 122, nos. 3–4, pp. 341–351.CrossRefGoogle Scholar
  19. 19.
    Mertens, P.G.N., Vandezande, P., Ye, X., Poelman, H., Vankelecom, I.F.J., and De Vos, D.E., Appl. Catal., A, 2009, vol. 355, nos. 1–2, pp. 176–183.CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Cui, X., Shi, F., and Deng, Y., Chem. Rev., 2012, vol. 112, no. 4, pp. 2467–2505.CrossRefGoogle Scholar
  21. 21.
    Hashmi, A.S.K. and Hutchings, G.J., Angew. Chem., Int. Ed., 2006, vol. 45, no. 47, pp. 7896–7936.CrossRefGoogle Scholar
  22. 22.
    Corma, A. and Garcia, H., Chem. Soc. Rev., 2008, vol. 37, no. 9, pp. 2096–2126.CrossRefGoogle Scholar
  23. 23.
    Stratakis, M. and Garcia, H., Chem. Rev., 2012, vol. 112, no. 8, pp. 4469–4506.CrossRefGoogle Scholar
  24. 24.
    Mitsudome, T. and Kaneda, K., Green Chem., 2013, vol. 15, no. 10, pp. 2636–2654.CrossRefGoogle Scholar
  25. 25.
    Julius, M., Roberts, S., and Fletcher, J.C.Q., Gold Bull., 2010, vol. 43, no. 4, pp. 298–306.CrossRefGoogle Scholar
  26. 26.
    Demidova, Yu.S., Suslov, E.V., Simakova, O.A., Simakova, I.L., Volcho, K.P., Salakhutdinov, N.F., and Murzin, D.Yu., Catal. Today, 2015, vol. 241, part B, pp. 189–194.CrossRefGoogle Scholar
  27. 27.
    Corti, C.W., Holliday, R.J., and Thompson, D.T., Appl. Catal., A, 2005, vol. 291, nos. 1–2, pp. 253–261.CrossRefGoogle Scholar
  28. 28.
    Simakova, O.A., Murzina, E.V., Mäki-Arvela, P., Leino, A.-R., Campo, B.C., Kordás, K., Willför, S.M., Salmi, T., and Murzin, D.Yu., J. Catal., 2011, vol. 282, no. 1, pp. 54–64.CrossRefGoogle Scholar
  29. 29.
    Demidova, Yu.S., Simakova, I.L., Estrada, M., Beloshapkin, S., Suslov, E.V., Korchagina, D.V., Volcho, K.P., Salakhutdinov, N.F., Simakov, A.V., and Murzin, D.Yu., Appl. Catal., A, 2013, vols. 464–465, pp. 348–356.CrossRefGoogle Scholar
  30. 30.
    Simakova, O.A., Leino, A.-R., Campo, B.C., Mäki-Arvela, P., Kordás, K., Mikkola, J.-P., and Murzin, D.Yu., Catal. Today, 2010, vol. 150, nos. 1–2, pp. 32–36.CrossRefGoogle Scholar
  31. 31.
    De Bruyn, M., Coman, S., Bota, R., Parvulescu, V.I., De Vos, D.E., and Jacobs, P.A., Angew. Chem., Int. Ed., 2003, vol. 42, no. 43, pp. 5333–5336.CrossRefGoogle Scholar
  32. 32.
    Grunwaldt, J.D., Kiener, C., Wögerbauer, C., and Baiker, A., J. Catal., 1999, vol. 181, no. 2, pp. 223–232.CrossRefGoogle Scholar
  33. 33.
    Schubert, M.M., Hackenberg, S., van Veen, A.C., Muhler, M., Plzak, V., and Behm, R.J., J. Catal., 2001, vol. 197, no. 1, pp. 113–122.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. S. Demidova
    • 1
  • A. V. Simakov
    • 2
  • I. L. Simakova
    • 1
  • D. Yu. Murzin
    • 3
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia
  2. 2.National Autonomous University of MexicoEnsenadaMexico
  3. 3.Åbo Akademi UniversityTurku/ÅboFinland

Personalised recommendations