Advertisement

Catalysis in Industry

, Volume 10, Issue 2, pp 152–158 | Cite as

Properties of Chimeric Polysaccharide Monooxygenase with an Attached Cellulose Binding Module and Its Use in the Hydrolysis of Cellulose-Containing Materials in the Composition of Cellulase Complexes

  • A. G. Bulakhov
  • A. V. Gusakov
  • A. M. Rozhkova
  • P. V. Volkov
  • V. Yu. Matys
  • I. N. Zorov
  • A. P. Sinitsyn
Biocatalysis
  • 6 Downloads

Abstract

The use of recently discovered polysaccharide monooxygenases (PMO) in the composition of cellulase complexes greatly enhances their saccharification ability. Genetic engineering is used in this work to produce a chimeric enzyme based on the Thielavia terrestris PMO with cellulose binding module (CBM) from the Penicillium verruculosum cellobiohydrolase I attached to the PMO С-terminus via a peptide linker. Chimeric PMO exhibits higher (by 24%) activity toward amorphous cellulose and wider substrate specificity than the initial PMO. As a result of the CBM attachment, chimeric PMO acquires the ability to cleave xylan and carboxymethyl cellulose in addition to cellulose and β-glucan, and its activity toward xyloglucan increases by one order of magnitude. Replacing 10% of the highly active cellulase preparation hBGL2 produced by P. verruculosum with the chimeric PMO while retaining the overall dose of the enzymes with regard to their protein concentration increases the yield of sugars during the hydrolysis of microcrystalline cellulose and powdered aspen wood by 24 and 47%, respectively. In addition, the maximum yield of sugars during wood hydrolysis is achieved in 24 h of reaction time, in contrast to hydrolysis with the indicated preparation without the added PMO, which requires 48 h.

Keywords

chimeric polysaccharide monooxygenase cellulase complex bioconversion of plant-derived material Thielavia terrestris Penicillium verruculosum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., and Monot, F., Curr. Opin. Biotechnol., 2009, vol. 20, no. 3, pp. 372–380.CrossRefGoogle Scholar
  2. 2.
    Merino, S.T. and Cherry, J., Adv. Biochem. Eng./Biotechnol., 2007, vol. 108, pp. 95–120.Google Scholar
  3. 3.
    Sims, R.E.H., Mabee, W., Saddler, J.N., and Taylor, M., Bioresour. Technol., 2010, vol. 101, no. 6, pp. 1570–1580.CrossRefGoogle Scholar
  4. 4.
    Žifcáková, L. and Baldrian, P., Fungal Ecol., 2012, vol. 5, no. 5, pp. 481–489.CrossRefGoogle Scholar
  5. 5.
    Kim, I.J., Nam, K.H., Yun, E.J., Kim, S., Youn, H.J., Lee, H.J., Choi, I.-G., and Kim, K.H., Appl. Microbiol. Biotechnol., 2015, vol. 99, no. 20, pp. 8537–8547.CrossRefGoogle Scholar
  6. 6.
    Proskurina, O.V., Korotkova, O.G., Rozhkova, A.M., Kondrat’eva, E.G., Matys, V.Yu., Zorov, I.N., Koshelev, A.V., Okunev, O.N., Nemashkalov, V.A., Bubnova, T.V., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2015, vol. 51, no. 6, pp. 667–673.CrossRefGoogle Scholar
  7. 7.
    Bulakhov, A.G., Gusakov, A.V., Chekushina, A.V., Satrutdinov, A.D., Koshelev, A.V., Matys, V.Yu., and Sinitsyn, A.P., Biochemistry (Moscow), 2016, vol. 81, no. 5, pp. 530–537.CrossRefGoogle Scholar
  8. 8.
    Phillips, M.C., Beeson, W.T., Cate, J.H.D., and Marletta, M.A., ACS Chem. Biol., 2011, vol. 6, no. 12, pp. 1399–1406.CrossRefGoogle Scholar
  9. 9.
    Levasseur, A., Drula, E., Lombard, V., Coutinho, P.M., and Henrissat, B., Biotechnol. Biofuels, 2013, vol. 6, no. 41, pp. 1–14.Google Scholar
  10. 10.
    Quinlan, R.J., Sweeney, M.D., Leggio, L.L., Otten, H., Poulsen, J.-C.N., Johansen, K.S., Krogh, K.B.R.M., Jørgensen, C.I., Tovborg, M., Anthonsen, A., Tryfona, T., Walter, C.P., Dupree, P., Xu, F., Davies, G.J., and Walton, P.H., Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 37, pp. 15079–15084.CrossRefGoogle Scholar
  11. 11.
    Tanghe, M., Danneels, B., Camattari, A., Glieder, A., Vandenberghe, I., Devreese, B., Stals, I., and Desmet, T., Mol. Biotechnol., 2015, vol. 57, nos. 11–12, pp. 1010–1017.CrossRefGoogle Scholar
  12. 12.
    Morozova, V.V., Gusakov, A.V., Andrianov, R.M., Pravilnikov, A.G., Osipov, D.O., and Sinitsyn, A.P., Biotechnol. J., 2010, vol. 5, no. 8, pp. 871–880.CrossRefGoogle Scholar
  13. 13.
    Crouch, L.I., Labourel, A., Walton, P.H., Davies, G.J., and Gilbert, H.J., J. Biol. Chem., 2016, vol. 291, no. 14, pp. 7439–7449.CrossRefGoogle Scholar
  14. 14.
    RF Patent 2378372, Byull. Izobret., 2010, no.1.Google Scholar
  15. 15.
    Dotsenko, A.S., Gusakov, A.V., Volkov, P.V., Rozhkova, A.M., and Sinitsyn, A.P., Biotechnol. Bioeng., 2016, vol. 113, no. 2, pp. 283–291.CrossRefGoogle Scholar
  16. 16.
    Aslanidis, C. and de Jong, P.J., Nucleic Acids Res., 1990, vol. 18, no. 20, pp. 6069–6074.CrossRefGoogle Scholar
  17. 17.
    Sanger, F., Nicklen, S., and Coulson, A.R., Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 12, pp. 5463–5467.CrossRefGoogle Scholar
  18. 18.
    Merzlov, D.A., Zorov, I.N., Dotsenko, G.S., Denisenko, Yu.A., Rozhkova, A.M., Satrutdinov, A.D., Rubtsova, E.A., Kondratieva, E.G, and Sinitsyn, A.P., Biochemistry (Moscow), 2015, vol. 80, no. 4, pp. 473–482.CrossRefGoogle Scholar
  19. 19.
    Aleksenko, A.Y., Makarova, N.A., Nikolaev, I.V., and Clutterbuck, A.J., Curr. Genet., 1995, vol. 28, no. 5, pp. 474–477.CrossRefGoogle Scholar
  20. 20.
    Proteome Research: Mass Spectrometry, James, P.E., Ed., Berlin: Springer, 2001.Google Scholar
  21. 21.
    Bulakhov, A.G., Volkov, P.V., Rozhkova, A.M., Gusakov, A.V., Nemashkalov, V.A., Satrutdinov, A.D., and Sinitsyn, A.P., PLoS One, 2017, vol. 12, no. 1. https://doi.org/10.1371/journal.pone.0170404
  22. 22.
    Sinitsyn, A.P., Chernoglazov, V.M., and Gusakov, A.V., Itogi Nauki Tekh., Ser.: Biotekhnol., 1990, vol. 25, pp. 30–37.Google Scholar
  23. 23.
    Frommhagen, M., Sforza, S., Westphal, A.H., Visser, J., Hinz, S.W.A., Koetsier, M.J., van Berkel, W.J.H., Gruppen, H., and Kabel, M.A., Biotechnol. Biofuels, 2015, vol. 8, no. 101, pp. 1–12.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. G. Bulakhov
    • 1
  • A. V. Gusakov
    • 1
    • 2
  • A. M. Rozhkova
    • 1
  • P. V. Volkov
    • 1
  • V. Yu. Matys
    • 3
  • I. N. Zorov
    • 1
    • 2
  • A. P. Sinitsyn
    • 1
    • 2
  1. 1.Federal Research Center of Fundamentals of BiotechnologyRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia

Personalised recommendations