Catalysis in Industry

, Volume 10, Issue 1, pp 75–82 | Cite as

Using an Inducible Promoter of the Glucoamylase Gene to Construct New Multienzyme Complexes from Penicillium verruculosum

  • A. P. Sinitsyn
  • P. V. Volkov
  • E. A. Rubtsova
  • I. A. Shashakov
  • A. M. Rozhkova
  • O. A. Sinitsyna
  • E. G. Kondrat’eva
  • I. N. Zorov
  • A. D. Satrudinov
  • D. A. Merzlov
  • V. Yu. Matys
Biocatalysis
  • 5 Downloads

Abstract

New recombinant strains of Penicillium verruculosum are created using a new plasmid construct based on an inducible promoter of glucoamylase gene (gla1) that secretes heterologous xylanase E (XylE) from P. canescens. New biocatalysts are produced that contain cellulolytic enzyme preparations (EPs) enriched with XylE. The amount of XylE in the recombinant EPs varies in the optimum range of 11–24% of the total protein while generally preserving the P. verruculosum cellulose complex. The hydrolytic activity of the new EPs with respect to polymeric plant-derived substrates exceeds that of EPs produced using other expression systems and commercial preparations. The new EP glaX-17 surpasses in particular a control EP based on the recipient strain by 13% in the efficiency of hydrolyzing aspen wood and is 20% more efficient than the commercial EP Accelerase Duet. The new EP glaX-17 displays 25% greater efficiency (35–43%) during the hydrolysis of wheat bran than the commercial EP Accelease Duet. The effectiveness is demonstrated of using the new gla1 promoter for the production of EPs (biocatalysts) while preserving the balanced cellulose complex of the strain and optimum yield of heterologous XylE required for the deep hydrolysis of xylan-containing plant biomass.

Keywords

fodder enzyme preparations enzymatic hydrolysis glucoamylase promoter biocatalysts xylanase plasmid constructs Penicillium verruculosum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balat, M., Energy Convers. Manage., 2011, vol. 52, no. 2, pp. 858–875.CrossRefGoogle Scholar
  2. 2.
    Adsul, M.G., Singhvi, M.S., Gaikaiwari, S.A., and Gokhale, D.V., Bioresour. Technol., 2011, vol. 102, no. 6, pp. 4304–4312.CrossRefGoogle Scholar
  3. 3.
    Bauer, S., Vasu, P., Persson, S., Mort, A.J., and Somerville, C.R., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, no. 30, pp. 11417–11422.CrossRefGoogle Scholar
  4. 4.
    Tiwari., P., Misra, B.N., and Sangwan, N.S., BioMed Res. Int., 2003. http://dx.doi.org/doi 10.1155/2013/203735Google Scholar
  5. 5.
    Teixeira, J.A., Gonçalves, D.B., de Queiroz, M.V., and de Araújo, E.F., J. Appl. Microbiol., 2011, vol. 111, no. 4, pp. 818–825.CrossRefGoogle Scholar
  6. 6.
    Gao, L., Li, Z., Xia, C., Qu, Y., Liu, M., Yang, P., Yu, L., and Song, X., Biotechnol. Biofuels, 2017, vol. 10. https://doi.org/10.1186/s13068-017-0783-3Google Scholar
  7. 7.
    Solov’eva, I.V., Okunev, O.N., Vel’kov, V.V., Koshelev, A.V., Bubnova, T.V., Kondrat’eva, E.G., Skomarovskii, A.A., and Sinitsyn, A.P, Microbiology, 2005, vol. 74, no. 2, pp. 141–146.CrossRefGoogle Scholar
  8. 8.
    Sinitsyn, A.P., Osipov, D.O., Rozhkova, A.M., Bushina, E.V., Dotsenko, G.S., Sinitsyna, O.A., Kondrat’eva, E.G., Zorov, I.N., Okunev, O.N., Nemashkalov, V.A., Matys, V.Yu., and Koshelev, A.V., Appl. Biochem. Microbiol., 2014, vol. 50, no. 8, pp. 761–772.CrossRefGoogle Scholar
  9. 9.
    Ilmén, M., Saloheimo, A., Onnela, M., and Penttilä, M., Appl. Environ. Microbiol., 1997, vol. 63, no. 4, pp. 1298–1306.Google Scholar
  10. 10.
    Pravil’nikov, A.G., Composition and saccharifying capacity of enzyme preparations produced with the use of new recombinant Penicillium verruculosum strains, Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 2012.Google Scholar
  11. 11.
    Merzlov, D.A., Zorov, I.N., Dotsenko, G.S., Denisenko, Yu.A., Rozhkova, A.M., Satrutdinov, A.D., Rubtsova, E.A., Kondrat’eva, E.G, and Sinitsyn, A.P., Biochemistry, 2015, vol. 80, no. 4, pp. 473–482.Google Scholar
  12. 12.
    Volkov, P.V., Rozhkova, A.M., Gusakov, A.V., Zorov, I.N., and Sinitsyn, A.P., Biochimie, 2015, vol. 110, pp. 45–51.CrossRefGoogle Scholar
  13. 13.
    Bulakhov, A.G., Volkov, P.V., Rozhkova, A.M., Gusakov, A.V., Nemashkalov, V.A., Satrutdinov, A.D., and Sinitsyn, A.P., PLoS One, 2017. https://doi.org/10.1371/journal.pone.0170404Google Scholar
  14. 14.
    Pisanelli, I., Kujawa, M., Gschnitzer, D., Spadiut, O., Seiboth, B., and Peterbauer, C., Appl. Microbiol. Biotechnol., 2010, vol. 86, no. 2, pp. 599–606.CrossRefGoogle Scholar
  15. 15.
    Inoue, H., Fujii, T., Yoshimi, M., Taylor, L.E., Decker, S.R., Kishishita, S., Nakabayashi, M., and Ishikawa, K., J. Ind. Microbiol. Biotechnol., 2013, vol. 40, no. 8, pp. 823–830.CrossRefGoogle Scholar
  16. 16.
    Nelson, N., J. Biol. Chem., 1944, vol. 153, pp. 375–379.Google Scholar
  17. 17.
    Somogyi, M., J. Biol. Chem., 1952, vol. 195, pp. 19–23.Google Scholar
  18. 18.
    Sinitsyn, A.P., Chernoglazov, V.M., and Gusakov, A.V., in Metody issledovaniya i svoystva tsellyuloliticheskikh fermentov (Methods and Properties of Cellulolytic Enzymes), Itogi Nauki Tekh., Ser.: Biotekhnologiya, Moscow: VINITI, 1990, vol. 25, pp. 30–37.Google Scholar
  19. 19.
    Peterson, G.L., Anal. Biochem., 1979, vol. 100, no. 2, pp. 201–220.CrossRefGoogle Scholar
  20. 20.
    Aleksenko, A.Y., Makarova, N.A., Nikolaev, I.V., and Clutterbuck, A.J., Curr. Genet., 1995, vol. 28, no. 5, pp. 474–478.CrossRefGoogle Scholar
  21. 21.
    Sinitsyn, A.P., Rubtsova, E.A., Shashkov, I.A, Rozhkova, A.M., Sinitsyna, O.A., Kondrat’eva, E.G., Zorov, I.N., Merzlov, D.A., Osipov, D.O., and Matys, V.Yu., Catal. Ind., 2017, vol. 9, no. 4, pp. 349–356.CrossRefGoogle Scholar
  22. 22.
    Hata, Y., Kitamoto, K., Gomi, K., Kumagai, C., and Tamura, G., Curr. Genet., 1992, vol. 22, no. 2, pp. 85–91.CrossRefGoogle Scholar
  23. 23.
    Gabrielii, I., Gatenholm, P., Glasser, W.G., Jain, R.K., and Kenne, L., Carbohydr. Polym., 2000, vol. 43, no. 4, pp. 367–374.CrossRefGoogle Scholar
  24. 24.
    Sun, R.C., Tomkinson, J., Wang, Y.X., and Xiao, B., Polymer, 2000, vol. 41, no. 7, pp. 2647–2656.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. P. Sinitsyn
    • 1
    • 2
  • P. V. Volkov
    • 3
  • E. A. Rubtsova
    • 3
  • I. A. Shashakov
    • 3
  • A. M. Rozhkova
    • 3
  • O. A. Sinitsyna
    • 1
  • E. G. Kondrat’eva
    • 3
  • I. N. Zorov
    • 1
    • 3
  • A. D. Satrudinov
    • 3
  • D. A. Merzlov
    • 1
  • V. Yu. Matys
    • 4
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.National Research Institute of Food Biotechnology, Division of the Federal Research Center for Food and BiotechnologyRussian Academy of SciencesMoscowRussia
  3. 3.Federal Research Center of BiotechnologyRussian Academy of SciencesMoscowRussia
  4. 4.Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchinoRussia

Personalised recommendations