Advertisement

Model for the Radiation Transport in the Matter of Porous-Type Heterogeneous Materials

  • M. E. ZhukovskiyEmail author
  • R. V. Uskov
  • E. B. Savenkov
  • M. V. Alekseev
  • M. B. Markov
  • F. N. Voronin
Article
  • 5 Downloads

Abstract

Physical and geometric models of heterogeneous porous media are constructed with direct allowance for their microstructure. A method is worked out for calculating the probability distributions of the energy and momenta of radiation particles interacting with a material of a complex chemical composition. The distributions are used for detailed simulation of the scattering and absorption of radiation in complex heterogeneous materials. An approach is developed for the discrete description of the realistic geometry of porous heterogeneous media taking into account their structure at the microlevel. The approach includes an algorithm for constructing a detecting system for the statistical estimation of the radiation energy release during its propagation in an object. The results of model calculations on a hybrid computing cluster K-100 are presented.

Keywords:

radiation transport porous media material microstructure 

Notes

ACKNOWLEDGMENTS

This work was supported by of the Russian Science Foundation (project no. 17-71-30014).

REFERENCES

  1. 1.
    M. E. Zhukovskiy, S. V. Podoliako, and R. V. Uskov, “Model of individual collisions for description of electron transport in matter,” Math. Models Comput. Simul. 4, 101–109 (2012).CrossRefzbMATHGoogle Scholar
  2. 2.
    M. E. Zhukovskiy and R. V. Uskov, “Modeling of interaction between gamma rays and matter on hybrid computers,” Mat. Model. 23 (7), 20–32 (2011).MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. E. Zhukovskiy and R. V. Uskov, “Mathematical modeling of radiative electron emission using hybrid supercomputers,” Vychisl. Metody Programm. 13, 189–197 (2012).Google Scholar
  4. 4.
    M. E. Zhukovskiy, S. V. Podoliako, and R. V. Uskov, “Modeling of electron transport in matter with the use of hybrid supercomputers,” Vychisl. Metody Programm. 12, 152–159 (2011).Google Scholar
  5. 5.
    M. E. Zhukovskiy and R. V. Uskov, “Hybrid Parallelization of the Algorithms of Radiation Cascade Transport Modeling,” Math. Models Comput. Simul. 7, 601–610 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D. E. Cullen, J. H. Hubbell, and L. D. Kissel, “EPDL97: the evaluated photon data library, '97 Version,” UCRL-50400 (Lawrence Livermore National Labor., 1997), Vol. 6, rev. 5.Google Scholar
  7. 7.
    I. M. Sobol, Monte Carlo Numerical Methods (Nauka, Moscow, 1973) [in Russian].zbMATHGoogle Scholar
  8. 8.
    "PENELOPE—a code system for Monte Carlo simulation of electron and photon transport," in Workshop Proceedings, Issy-les-Moulineaux, France, Nov. 5–7, 2001.Google Scholar
  9. 9.
    Geant4 Collab., Geant4 User’s Guide for Application Developers, Vers. geant4 10.0.6, 2013. http:// geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/index.html.Google Scholar
  10. 10.
    M. S. Seltzer, “An overview of ETRAN Monte Carlo methods,” in Monte Carlo Transport of Electrons and Photons, Ed. by T. M. Jenkins, W. R. Nelson, and A. Rindi (Plenum, New York, 1988).Google Scholar
  11. 11.
    J. A. Halbleib, R. P. Kensek, T. A. Mehlhom, G. D. Valdez, S. M. Seltzer, and M. J. Berger, “ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes,” Report SAND91-1634 (Sandia Natl. Labor., Albuquerque, 1992).Google Scholar
  12. 12.
    J. F. Briesmeister, “MCNP—a general Monte Carlo N-particle transport code,” LANL Report LA-13709-M (Los Alamos, 2000).Google Scholar
  13. 13.
    F. H. Stillinger and B. D. Lubachevsky, “Crystalline-amorphous interface packings for disks and spheres,” J. Stat. Phys. 73, 497–514 (1993).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    B. D. Lubachevsky and F. H. Stillinger, “Geometric properties of random disk packings,” J. Stat. Phys. 60, 561–583 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    B. D. Lubachevsky, “How to simulate billiards and similar systems,” J. Comput. Phys. 94, 255–283 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato, “Packing hard spheres in high dimensional Euclidean spaces,” Phys. Rev. E 74, 041127-1–11 (2006).CrossRefGoogle Scholar
  17. 17.
    F. P. Preparata and M. Shamos, Computational Geometry: An Introduction (Springer, Berlin, Heidelberg, 1985).CrossRefzbMATHGoogle Scholar
  18. 18.
    M. E. Zhukovskiy and V. A. Egorova, “Handling of the radiative electron emission modeling results by use of the neural networks,” Math. Montisnigri 38, 89–99 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. E. Zhukovskiy
    • 1
    Email author
  • R. V. Uskov
    • 1
  • E. B. Savenkov
    • 1
  • M. V. Alekseev
    • 1
  • M. B. Markov
    • 1
  • F. N. Voronin
    • 1
  1. 1.Keldysh Institute for Applied Mathematics, Russian Academy of SciencesMoscowRussia

Personalised recommendations