Advertisement

Simulation of the Self-Organization Process of Carbon Nanotube Systems

  • A. A. KnizhnikEmail author
  • I. A. Iudintsev
Article
  • 6 Downloads

Abstract

In this paper, we develop a coarse grained numerical model for the simulation of a self-organization process for a system of carbon nanotubes under the applied electric field. The model describes the polarization of nanotubes in the system with an electric field and also includes the Van der Waals interaction between nanotubes. We develop an iterative computation algorithm for particle charges in the nanotube, providing a significant speedup of the computation. Another advantage of this algorithm is the better scaling of the computation time as a function of the system size. The results of the application of this model to computing the self-organization process of the dynamics of carbon nanotubes are demonstrated.

Keywords:

coarse-grained modelling Coulomb interaction self-organization carbon nanotubes 

Notes

REFERENCES

  1. 1.
    C. A. Martin, J. K. W. Sandler, A. H. Windle, M.-K. Schwarz, W. Bauhofer, K. Schulte, and M. S. P. Shaffer, “Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites,” Polymer 46, 877–886 (2005).CrossRefGoogle Scholar
  2. 2.
    C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K. E. Wise, G. Sauti, P. T. Lillehei, and J. C. Harrison, “Aligned single-wall carbon nanotube polymer composites using an electric field,” Polym. Phys. 44, 1751–1762 (2006).CrossRefGoogle Scholar
  3. 3.
    Ch. Lin and J. W. Shan, “Electrically tunable viscosity of dilute suspensions of carbon nanotubes,” Phys. Fluids 19 (2007).Google Scholar
  4. 4.
    C. Yu, Ch. Masarapu, J. Rong, B. Wei, and H. Jiang, “Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms,” Adv. Mater., No. 21, 4793–4797 (2009).Google Scholar
  5. 5.
    Th. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, Ch.-L. Cheung, and Ch. M. Lieber, “Carbon nanotube-based nonvolatile random access memory for molecular computing,” Science (Washington, DC, U. S.) 289, 94–97 (2000).CrossRefGoogle Scholar
  6. 6.
    Zh. Wang, M. Devel, R. Langlet, and B. Dulmet, “Electrostatic deflections of cantilevered semiconducting single-walled carbon nanotubes,” Phys. Rev. B 75 (2007).Google Scholar
  7. 7.
    Zh. Wang and M. Devel, “Electrostatic deflections of cantilevered metallic carbon nanotubes via charge-dipole model,” Phys. Rev. B 76 (2007).Google Scholar
  8. 8.
    A. I. Oliva-Avilés, F. Avilés, V. Sosa, and G. D. Seidel, “Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields,” Carbon 69, 342–354 (2014).CrossRefGoogle Scholar
  9. 9.
    G. Belijar, Z. Valdez-Nava, S. Diaham, L. Laudebat, T. B. Jones, and T. Lebey, “Dynamics of particle chain formation in a liquid polymer under an electric field: modeling and experiments,” J. Phys. D: Appl. Phys. 50 (2017).Google Scholar
  10. 10.
    D. Frenkel, Understanding Molecular Simulation (Elsevier, Amsterdam, 2001), pp. 292–300.Google Scholar
  11. 11.
    L. A. Girifalco, “Interaction potential for carbon (C60) molecules,” J. Phys. 95, 5370–5371 (1991).Google Scholar
  12. 12.
    E. Bitzek, P. Koskinen, F. Gahler, M. Moseler, and P. Gumbsch, “Structural relaxation made simple,” Phys. Rev. Lett. 97, 170201 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kintech Lab LtdMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyMoscowRussia

Personalised recommendations