Advertisement

The Effect of Electron-Ion Collisions on Breaking Cylindrical Plasma Oscillations

  • A. A. Frolov
  • E. V. ChizhonkovEmail author
Article

Abstract

The influence of electron-ion collisions on breaking cylindrical nonlinear plasma oscillations is studied. Numerical calculations by the particle method and an analytic analysis by the perturbation method in the weak nonlinearity regime show that, with an increasing collision frequency, the time needed to break plasma oscillations increases. The threshold value of the collision frequency is found exceeding which the density singularity does not arise. In this case, the maximum of the electron density formed outside the axis of the oscillations, the growth of which in the regime of rare collisions leads to the breaking effect, after some growth begins to decrease due to the damping of the oscillations.

Keywords:

plasma oscillations breaking effect electron-ion collisions perturbation method numerical simulation particle method 

Notes

REFERENCES

  1. 1.
    R. C. Davidson, Methods in Nonlinear Plasma Theory (Academic, New, York, London, 1972).Google Scholar
  2. 2.
    Ya. B. Zeldovich and A. D. Myshkis, Elements of Mathematical Physics (Nauka, Moscow, 1973) [in Russian].Google Scholar
  3. 3.
    A. I. Akhiezer and R. V. Polovin, “Theory of wave motion of an electron plasma,” Sov. Phys. JETP 3, 696–705 (1956).MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. M. Dawson, “Nonlinear electron oscillations in a cold plasma,” Phys. Rev. 113, 383–387 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    G. Lehmann, E. W. Laedke, and K. H. Spatschek, “Localized wake-field excitation and relativistic wave-breaking,” Phys. Plasmas 14, 103109 (2007).CrossRefGoogle Scholar
  6. 6.
    L. M. Gorbunov, A. A. Frolov, E. V. Chizhonkov, and N. E. Andreev, “Breaking of nonlinear cylindrical plasma oscillations,” Plasma Phys. Rep. 36, 345–356 (2010).CrossRefGoogle Scholar
  7. 7.
    A. A. Frolov and E. V. Chizhonkov, “Relativistic breaking effect of electron oscillations in a plasma slab,” Vychisl. Metody Programm. 15, 537–548 (2014).Google Scholar
  8. 8.
    E. Infeld, G. Rowlands, and A. A. Skorupski, “Analytically solvable model of nonlinear oscillations in a cold but viscous and resistive plasma,” Phys. Rev. Lett. 102, 145005 (2009).CrossRefGoogle Scholar
  9. 9.
    P. S. Verma, J. K. Soni, S. Segupta, and P. K. Kaw, “Nonlinear oscillations in a cold dissipative plasma,” Phys. Plasmas 17, 044503 (2010).CrossRefGoogle Scholar
  10. 10.
    A. A. Frolov and E. V. Chizhonkov, “Influence of electron collisions on the breaking of plasma oscillations,” Plasma Phys. Rep. 44, 398–404 (2018).CrossRefGoogle Scholar
  11. 11.
    N. N. Bogoliubov and Yu. A. Mitropolskii, Asymptotic Methods in the Theory of Nonlinear Oscillations (Nauka, Moscow, 1974; Gordon and Breach, London, 1961).Google Scholar
  12. 12.
    R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981).zbMATHGoogle Scholar
  13. 13.
    A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electrodynamics (Vyssh. Shkola, Moscow, 1978; Springer, Berlin, Heidelberg, 1984).Google Scholar
  14. 14.
    V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975) [in Russian].Google Scholar
  15. 15.
    V. P. Silin, Introduction to Kinetic Theory of Gases (Nauka, Moscow, 1971) [in Russian].Google Scholar
  16. 16.
    V. P. Silin and A. A. Rukhadze, Electromagnetic Properties of Plasma and Plasma-Like Media, 2nd ed. (Librokom, Moscow, 2012) [in Russian].Google Scholar
  17. 17.
    S. I. Braginskii, “Transport phenomena in plasma,” in Problems of Plasma Theory (Gosatomizdat, Moscow, 1963), pp. 183–285 [in Russian].Google Scholar
  18. 18.
    B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1968) [in Russian].zbMATHGoogle Scholar
  19. 19.
    E. V. Chizhonkov, “Diagnostics of a gradient catastrophe for a class of quasilinear hyperbolic systems,” Russ. J. Numer. Anal. Math. Model. 32, 13–26 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    N. S. Bakhvalov, A. A. Kornev, and E. V. Chizhonkov, Numerical Methods. Task Solving and Exercises. Classical University Textbook, 2nd ed. (Laboratoriya Znanii, Moscow, 2016) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures, Russian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations