Godunov-Type Method and Shafranov’s Task for Multi-Temperature Plasma

  • A. G. AksenovEmail author
  • V. F. TishkinEmail author
  • V. M. Chechetkin


A new multi-temperature code for a multi-component gas-dynamic is tested. The velocities of all components with nonzero mass are assumed to be identical to each other. The method operates with the tabular equation of state. The method may take into account the electron heat conduction, the radiation transfer, the exchange of energy between components, and the chemical reactions. The gas-dynamic part is based on the Godunov approach with the efficient approximate solution of the Riemann problem solver and the application of the local equation of state. The goal of the investigation is to verify the code and obtain an exact solution of Shafranov’s task for a shock wave in hydrogen plasma.


multi-temperature plasma equation of state Godunov-type scheme 



This work was partially supported by the Russian Science Foundation, project no. 16-11-10339 and the Federal Agency for Scientific Organizations of Russia for the ICAD RAS.


  1. 1.
    S. K. Godunov, “A difference scheme for the shock wave calculations,” Usp. Mat. Nauk 12, 176–177 (1957).Google Scholar
  2. 2.
    G. V. Vereshchagin and A. G. Aksenov, Relativistic Kinetic Theory (Cambridge Univ. Press, Cambridge, 2017).CrossRefzbMATHGoogle Scholar
  3. 3.
    S. K. Godunov, “A difference scheme for numerical solution of discontinuous solution of hydrodynamic equations,” Math. Sb. 47, 271–306 (1959).Google Scholar
  4. 4.
    P. Colella and P. R. Woodward, “The piecewise parabolic method (PPM) for gas-dynamical simulations,” J. Comput. Phys. 54, 174 (1984).CrossRefzbMATHGoogle Scholar
  5. 5.
    P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys. 135, 250 (1997).CrossRefzbMATHGoogle Scholar
  6. 6.
    P. Colella and H. M. Glaz, “Efficient solution algorithms for the Riemann problem for real gases,” J. Comput. Phys. 59, 264 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    M. M. Basko, M. D. Churazov, and A. G. Aksenov, “Prospects of heavy ion fusion in cylindrical geometry,” Laser Part. Beams 20, 411–414 (2002).CrossRefGoogle Scholar
  8. 8.
    S. I. Anisimov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Y. V. Petrov, and V. A. Khokhlov, “Ablated matter expansion and crater formation under the action of ultrashort laser pulse,” J. Exp. Theor. Phys. 103, 183–197 (2006).CrossRefGoogle Scholar
  9. 9.
    V. E. Fortov, D. H. Hoffmann, and B. Y. Sharkov, “Reviews of topical problems: intense ion beams for generating extreme states of matter,” Phys. Usp. 51, 109–131 (2008).CrossRefGoogle Scholar
  10. 10.
    S. W. Bruenn, “Stellar core collapse: numerical model and infall epoch,” Astrophys. J. Suppl. 58, 771 (1985).CrossRefGoogle Scholar
  11. 11.
    M. Pelanti and K.-M. Shyue, “A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves,” J. Comput. Phys. 259, 331–357 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. T. Zhukov, A. V. Zabrodin, and O. B. Feodoritova, “A method for solving two-dimensional equations of heat-conducting gas dynamics in domains of complex configurations,” J. Comput. Math. Math. Phys. 33, 1099–1108 (1993).Google Scholar
  13. 13.
    G. H. Miller and E. G. Puckett, “A high-order Godunov method for multiple condensed phases,” J. Comput. Phys. 128, 134–164 (1996).CrossRefzbMATHGoogle Scholar
  14. 14.
    A. G. Aksenov and M. D. Churazov, “Ignition problems for advanced fuel,” Nucl. Instrum. Methods Phys. Res., Sect. A 464, 180–184 (2001).Google Scholar
  15. 15.
    A. G. Aksenov and M. D. Churazov, “Deuterium targets and the MDMT code,” Laser Part. Beams 21, 81–84 (2003).CrossRefGoogle Scholar
  16. 16.
    A. G. Aksenov, M. D. Churazov, A. A. Golubev, D. G. Koshkarev, and E. A. Zabrodina, “Cylindrical targets for heavy ions fusion,” Nucl. Instrum. Methods Phys. Res., Sect. A 544, 412 (2005).Google Scholar
  17. 17.
    V. M. Chechetkin and A. G. Aksenov, “Supernova-explosion mechanism involving neutrinos,” Nucl. Phys. 81, 118 (2018).Google Scholar
  18. 18.
    V. D. Shafranov, “A structure of the shock wave in the plasma,” Zh. Eksp. Teor. Fiz. 5, 1183 (1957).MathSciNetzbMATHGoogle Scholar
  19. 19.
    A. G. Aksenov, “Computation of shock waves in plasma,” Comput. Math. Math. Phys. 55, 1752 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. M. Basko, “Metallic equation of state in the maen ion approximation,” Sov. J. Plasma Phys. 10, 689–694 (1984).Google Scholar
  21. 21.
    C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, Englewood Cliffs, NJ, 1971).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Computer Aided Design, Russian Academy of SciencesMoscow,Russia
  2. 2.Keldysh Institute of Applied Mathematics, Russian Academy of SciencesMoscowRussia

Personalised recommendations