Mathematical Models and Computer Simulations

, Volume 10, Issue 2, pp 154–163 | Cite as

A Multicriteria Method for Identification and Forecasting

Article
  • 3 Downloads

Abstract

A multicriteria approach to identify and forecast mathematical models is considered. The need for such an approach arises, in particular, when it is necessary to take into account errors that cannot be reduced to one function and in the absence of specific information about the data interference class. The paper deals with a multicriteria version of the identification sets method based on approximating and visualizing the graph of the vector function of identification errors and its projections onto the space of identification parameters. The nearness function is introduced that describes the proximity of a criterion point to the set of nonimprovable (Pareto efficient) solutions of the identification problem. The efficient criteria set (Pareto frontier), the sets of efficient and subefficient parameters, and the corresponding forecast trajectory tubes are studied. To construct these objects, methods for approximating implicitly specified sets are used, in particular, methods for approximating the Edgeworth–Pareto hull and the deep holes method. The technique and examples for two criteria of identification quality are considered in detail.

Keywords

parameter identification forecasting robustness multicriteria decision making efficient set Pareto frontier Edgeworth–Pareto hull efficient and subefficient solutions methods for approximating implicitly specified sets identification sets method interactive decision maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Krasnoshchekov and A. A. Petrov, Principles of Model Construction (FAZIS, VTS RAN, Moscow, 2000) [in Russian].MATHGoogle Scholar
  2. 2.
    L. Ljung, System Identification: Theory for User (Prentice-Hall, Englewood Cliffs, NJ, 1987).MATHGoogle Scholar
  3. 3.
    G. K. Kamenev, “Multicriteria identification sets method,” Comput. Maths. Math. Phys. 56, 1843–1858 (2016).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    G. K. Kamenev, “A visual method for parameter estimation,” Dokl. Math. 57, 305–307 (1998).MATHGoogle Scholar
  5. 5.
    G. K. Kamenev, “On one approach to the uncertainty investigation arising in model identification,” Mat. Model. 22 (9), 116–128 (2010).MATHGoogle Scholar
  6. 6.
    G. K. Kamenev, Method for Analyzing Uncertainty in Model Parameter Identification (Vychisl. Tsentr RAN, Moscow, 2010) [in Russian].Google Scholar
  7. 7.
    V. E. Berezkin, G. K. Kamenev, and A. V. Lotov, “Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier,” Comput. Math. Math. Phys. 46, 1918–1931 (2006).MathSciNetCrossRefGoogle Scholar
  8. 8.
    V. A. Bushenkov, O. L. Chernykh, G. K. Kamenev, and A. V. Lotov, “Multidimensional images given by mappings: construction and visualization,” Pattern Recognit. Image Anal. 5, 35–56 (1995).Google Scholar
  9. 9.
    A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, and O. L. Chernykh, Computer and Compromise. Search. Method of Attainable Targets (Nauka, Moscow, 1997) [in Russian].MATHGoogle Scholar
  10. 10.
    A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Decision Maps. Approximation and Visualization of Pareto Frontier, Vol. 89 of Applied Optimization (Kluwer Academic, Boston, Dordrecht, New York, London, 2004).MATHGoogle Scholar
  11. 11.
    G. K. Kamenev, “Approximation of completely bounded sets by the deep holes method,” Comput. Math. Math. Phys. 41, 1667–1675 (2001).MathSciNetMATHGoogle Scholar
  12. 12.
    M. Yu. Andreev, V. P. Vrzheshch, N. P. Pilnik, I. G. Pospelov, M. A. Khokhlov, A. A. Zhukova, and S. A. Radionov, “Intertemporal general equilibrium model of the Russian economy based on national accounts deaggregation,” in Proceedings of the Seminar of I. G. Petrovskii (Mosk. Gos. Univ., Moscow, 2013), pp. 43–145; J. Math. Sci. (N.Y.) 197, 175–236 (2014).MathSciNetMATHGoogle Scholar
  13. 13.
    G. K. Kamenev and N. N. Olenev, “Study of the russian economy’s identification and forecast stability using a Ramsey type model,” Math. Models Comput. Simul. 7, 179–189 (2015).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dorodnicyn Computing CentreRussian Academy of SciencesMoscowRussia

Personalised recommendations