Advertisement

Noncommutative Geometry of Groups Like Γ0(N)

  • Jorge PlazasEmail author
Research Articles
  • 2 Downloads

Abstract

We show that the Connes-Marcolli GL2-system can be represented on the Big Picture, a combinatorial gadget introduced by Conway in order to understand various results about congruence subgroups pictorially. In this representation the time evolution of the GL2-system is implemented by Conway’s distance between projective classes of commensurable lattices. We exploit these results in order to associate quantum statistical mechanical systems to congruence subgroups. This work is motivated by the study of congruence subgroups and their principal moduli in connection with monstrous moonshine.

Key words

commensurability of Q-lattices congruence subgroups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. O. L. Atkin and J. Lehner, “Hecke operators on Γ0(m),” Math. Ann. 185, 134–160 (1970).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    U. Baumgartner, M. Laca, J. Ramagge and G. Willis, “Hecke algebras from groups acting on trees and HNN extensions,” J. Algebra 321 (11), 3065–3088 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R. E. Borcherds, “Monstrousmoonshine and monstrous Lie superalgebras,” Invent. Math. 109 (2), 405–444 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J.-B. Bost and A. Connes, “Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory,” SelectaMath. (N.S.) 1 (3), 411–457 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 1, Texts and Monographs in Physics, 2. C*- and W*-Algebras, Symmetry Groups, Decomposition of States (Springer- Verlag, New York, 1987).zbMATHGoogle Scholar
  6. 6.
    O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 2, Texts and Monographs in Physics, 2. EquilibriumStates.Models inQuantum StatisticalMechanics(Springer-Verlag, Berlin, 1997)Google Scholar
  7. 7.
    A. Connes and M. Marcolli, “From physics to number theory via noncommutative geometry,” Frontiers in Number Theory, Physics, and Geometry. I, pp. 269–347 Springer, Berlin, 2006.CrossRefGoogle Scholar
  8. 8.
    A. Connes, M. Marcolli and N. Ramachandran, “KMS states and complex multiplication,” Selecta Math. (N.S.) 11 (3-4), 325–347 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Connes, M. Marcolli and N. Ramachandran, “KMS states and complex multiplication. II,” Operator Algebras: The Abel Symposium 2004, AbelSymp. 1, 15–59 (Springer, Berlin, 2006).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Connes and H. Moscovici, “Modular Hecke algebras and their Hopf symmetry,” Moscow Math. J. 4 (1), 67–109 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. H. Conway, “Understanding groups like Γ0(N),” Groups, Difference Sets, and theMonster, (Columbus, OH, 1993), Ohio State Univ.Math. Res. Inst. Publ. 4, pp. 327–343 (de Gruyter, Berlin, 1996).MathSciNetzbMATHGoogle Scholar
  12. 12.
    J. Conway, J. McKay and A. Sebbar, “On the discrete groups of Moonshine,” Proc. Amer. Math. Soc. 132 (8), 2233–2240 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. H. Conway and S. P. Norton, “Monstrous moonshine,” Bull. London Math. Soc. 11 (3), 308–339 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    G. Cornelissen, M. Marcolli, K. Reihani and A. Vdovina, “Noncommutative geometry on trees and buildings,” Traces in Number Theory, Geometry and Quantum Fields, Aspects Math., E38, pp. 73–98 (Friedr. Vieweg, Wiesbaden, 2008).MathSciNetzbMATHGoogle Scholar
  15. 15.
    C. J. Cummins and S. P. Norton, “Rational Hauptmoduls are replicable,” Canad. J. Math. 47 (6), 1201–1218 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    J. F. Duncan, “Arithmetic groups and the affine E8 Dynkin diagram,” Groups and Symmetries, CRMProc. Lecture Notes 47, pp. 135–163 (Amer.Math. Soc., Providence, RI, 2009).CrossRefzbMATHGoogle Scholar
  17. 17.
    I. B. Frenkel, J. Lepowsky and A. Meurman, “A natural representation of the Fischer-Griess Monster with the modular function J as character,” Proc. Nat. Acad. Sci. U.S.A. 81 (10, Phys. Sci.), 3256–3260 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    I. Frenkel, J. Lepowsky and A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math. 134 (Academic Press, Inc., Boston, MA, 1988).Google Scholar
  19. 19.
    A. Kumjian, “Notes on C*-algebras of graphs,” Operator Algebras and Operator Theory, (Shanghai, 1997), Contemp. Math. 228, pp. 189–200 (Amer.Math. Soc., Providence, RI, 1998).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Laca, N. S. Larsen and S. Neshveyev, “Phase transition in the Connes-Marcolli GL2-system,” J. Noncommut. Geom. 1 (4), 397–430 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    J. McKay and A. Sebbar, “Replicable functions: an introduction,” Frontiers in Number Theory, Physics, and Geometry. II, pp. 373–386 (Springer, Berlin, 2007).CrossRefGoogle Scholar
  22. 22.
    J-P. Serre, Trees, (Springer-Verlag, Berlin-New York, 1980).CrossRefzbMATHGoogle Scholar
  23. 23.
    G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, (Kanô Memorial Lectures, No. 1) Publications of the Mathematical Society of Japan, No. 11 (Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971).Google Scholar
  24. 24.
    J. G. Thompson, “Some numerology between the Fischer-GriessMonster and the ellipticmodular function,” Bull. London Math. Soc. 11 (3), 352–353 (1979).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Pontificia Universidad JaverianaBogotá D.C.Colombia

Personalised recommendations