Contemporary Problems of Ecology

, Volume 12, Issue 7, pp 769–779 | Cite as

Spatial Variation in the Concentration of Phenolic Compounds and Nutritional Elements in the Needles of Spruce in Northern Taiga Forests

  • N. A. ArtemkinaEmail author
  • M. A. Orlova
  • N. V. Lukina


Patterns of lateral intrabiogeocenotic (between separate elementary biogeoranges) and interbiogeocenotic variability in the content of secondary metabolites and nutritional elements in the different-age needles of spruce (Picea abies ssp. obovata (Ledeb.) Domin) have been studied along the geochemical transect in spruce forests in northern taiga (Kola Peninsula). The perennial needles of spruce undergrowth (30–40 years) are characterized by a higher concentration of carbon, lignin, high-molecular-weight phenolic compounds, bounded tannins, and wide ranges of lignin/cellulose and lignin/N ratios compared to trees older than 100 years. The needles of spruce trees older than 100 years have significantly more bounded tannins and low-molecular-weight phenols in transitional and accumulative sites than in automorphic locations. The concentration of lignin and lignin/N ratio was significantly higher in the 5–7-year-old needles of spruce trees growing in automorphic conditions, while spruce forests in transitional and accumulative sites have the maximum values of these indicators for the current-year needles. Changes in the chemical composition of spruce needles along the geochemical transect are determined by (1) different concentrations of nutritional elements and secondary metabolites in soils; (2) increased soil moisture from automorphic to accumulative sites; (3) the features of the microbiological activity of soils; and (4) environmental factors (light, temperature, etc.).


phenolic compounds lignin nutritional elements forests of northern taiga age of stand intraspecific variability chemical composition of needles Picea abies ssp. obovata 



This study was held within the framework of the program of the Presidium of the Russian Academy of Sciences (0110-2018-0005) and the projects of state assignment to the Kola Science Center, Russian Academy of Sciences (0226-2018-0111), and Center for Forest Ecology and Productivity, Russian Academy of Sciences (AAAA-A18-118052400130-7).


Conflict of interests

The authors declare that they have no conflicts of interest

Statement on the welfare of animals

This article does not contain any studies involving animals performed by any of the authors.


  1. 1.
    Aitkenhead-Peterson, J.A., Alexander, J.E., Albrechtová, J., Krám, P., Rock, B., Cudlín, P., Hruška, J., Lhotaková, Z., Huntley, R., Oulehle, F., Polák, T., and McDo-well, W.H., Linking foliar chemistry to forest floor solid and solution phase organic C and N in Picea abies (L.) Karst stands in northern Bohemia, Plant Soil, 2006, vol. 283, nos. 1–2, pp. 187–201.CrossRefGoogle Scholar
  2. 2.
    Artemkina, N.A., The content of phenolic compounds in V. vitis-idaea L. of pine forests of Kola Peninsula, Khim. Rastit. Syr’ya, 2010, no. 3, pp. 153–160.Google Scholar
  3. 3.
    Artemkina, N.A. and Gorbacheva, T.T., The adsorption of monomeric phenolic forms by soil from plant litter and litters in green moss-spruce forests, Lesovedenie, 2006, no. 3, pp. 50–56.Google Scholar
  4. 4.
    Artemkina, N.A. and Roshchin, V.I., Extractives of needles and shoots of Picea abies (L.) Karst. 1. Phenolic compounds: extraction and analysis, Rastit. Resur., 2004, vol. 40, no. 3, pp. 77–87.Google Scholar
  5. 5.
    Artemkina, N.A. and Roshchin, V.I., Extractives of needles and shoots of Picea abies (Pinaceae). 3. The dynamics of the content of phenolic compounds, Rastit. Resur., 2006, vol. 42, no. 3, pp. 66–73.Google Scholar
  6. 6.
    Artemkina, N.A., Orlova, M.A., and Lukina, N.V., Chemical composition of Juniperus sibirica needles (Cupressaceae) in the forest–tundra ecotone, the Khibiny Mountains, Russ. J. Ecol., 2016, vol. 47, no. 4, pp. 321–328.CrossRefGoogle Scholar
  7. 7.
    Artemkina, N.A., Lukina, N.V., and Orlova, M.A., Spatial dynamics of the content of secondary metabolites, carbon, and nitrogen in the litter of northern taiga spruce forests, Lesovedenie, 2018, no. 1, pp. 37–47.Google Scholar
  8. 8.
    Barbehenn, R.V. and Constabel, C.P., Tannins in plant–herbivore interactions, Phytochemistry, 2011, vol. 72, no. 13, pp. 1551–1565.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Barton, K.E. and Koricheva, J., The ontogeny of plant defense and herbivory: characterizing general patterns using meta-analysis, Am. Nat., 2010, vol. 175, no. 4, pp. 481–493.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Berg, B., Foliar litter decomposition: a conceptual model with focus on pine (Pinus) litter—A genus with global distribution, ISRN Forestry, 2014, vol. 2014, art. ID 838169.CrossRefGoogle Scholar
  11. 11.
    Blanco, J.A. The representation of allelopathy in ecosystem-level forest models, Ecol. Model., 2007, vol. 209, nos. 2–4, pp. 65–77.CrossRefGoogle Scholar
  12. 12.
    Boege, K. and Marquis, R.J., Erratum: Facing herbivory as you grow up: the ontogeny of resistance in plants, Trends Ecol. Evol., 2005, vol. 20, no. 10, pp. 441–448.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bryant, J.P., Chapin, F.S., III, and Klein, D.R., Carbon : nutrient balance of boreal plants in relation to vertebrate herbivory, Oikos, 1983, vol. 40, no. 3, pp. 357–368.CrossRefGoogle Scholar
  14. 14.
    Close D.C. and Mcarthur C., Rethinking the role of many plant phenolics—protection from photodamage not herbivores? Oikos, 2002, vol. 99, no. 1, pp. 166–172.CrossRefGoogle Scholar
  15. 15.
    Cheynier, V., Comte, G., Davies, K.M., Lattanzio, V., and Martens, S., Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology, Plant Physiol. Biochem., 2013, vol. 72, pp. 1–20.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Croft, H., Chen, J.M., and Noland, T.L., Stand age effects on boreal forest physiology using a long time-series of satellite data, For. Ecol. Manage., 2014, vol. 328, pp. 202–208.CrossRefGoogle Scholar
  17. 17.
    Fritz, C., Palacios-Rojas, N., Feil, R., and Stitt, M., Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism, Plant J., 2006, vol. 46, no. 4, pp. 533–548.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Giertych, M.J., Karolewski, P., and de Temmerman, L.O., Foliage age and pollution alter content of phenolic compounds and chemical elements in Pinus nigra needles, Water, Air, Soil Pollut., 1999, vol. 110, nos. 3–4, pp. 363–377.CrossRefGoogle Scholar
  19. 19.
    Hamilton, J.G., Zangerl, A.R., DeLucia, E.H., and Berenbaum, M.R., The carbon-nutrient balance hypothesis: its rise and fall, Ecol. Lett., 2001, vol. 4, no. 1, pp. 86–95.CrossRefGoogle Scholar
  20. 20.
    Hatcher, P.E., Seasonal and age-related variation in the needle quality of five conifer species, Oecologia, 1990, vol. 85, no. 2, pp. 200–212.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hättenschwiler S. and Vitousek P.M., The role of polyphenols in terrestrial ecosystem nutrient cycling, Trends Ecol. Evol., 2000, vol. 15, no. 6, pp. 238–243.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Helmisaari, H.-S., Spatial and age-related variation in nutrient concentrations of Pinus sylvestris needles, Silva Fenn., 1992, vol. 26, no. 3, pp. 145–153.CrossRefGoogle Scholar
  23. 23.
    Herms D.A. and Mattson W.J., The dilemma of plants: to grow or defend, Q. Rev. Biol., 1992, vol. 67, no. 3, pp. 283–335.CrossRefGoogle Scholar
  24. 24.
    Horner, J.D., Cates, R.G., and Gosz, J.R., Tannin, nitrogen, and cell wall composition of green vs. senescent Douglas-fir foliage, Oecologia, 1987, vol. 72, no. 4, pp. 515–519.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kabata-Pendias, A. and Pendias, H., Trace Elements in Soils and Plants, Boca Raton, Fl: CRC Press, 2001.Google Scholar
  26. 26.
    Kanerva, S., Kitunen, V., Loponen, J., and Smolander, A., Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots pine, Biol. Fertil. Soils, 2008, vol. 44, no. 4, pp. 547–556.CrossRefGoogle Scholar
  27. 27.
    Kashulin, P.A., Kalacheva, N.V., Artemkina, N.A., and Chernous, S.A., Photochemical processes in the Northern plants and environment, Vestn. Murmansk. Gos. Tekh. Univ., 2009, vol. 12, no. 1, pp. 137–142.Google Scholar
  28. 28.
    Kazimirov, N.I. and Morozova, Biologicheskii krugovorot veshchestv v el’nikakh Karelii (Biological Cycle of Substances in Spruce Forests of Karelia), Leningrad: Nauka, 1973.Google Scholar
  29. 29.
    Kivimäenpää, M., Riikonen, J., Sutinen, S., and Holopainen, T., Cell structural changes in the mesophyll of Norway spruce needles by elevated ozone and elevated temperature in open-field exposure during cold acclimation, Tree Physiol., 2014, vol. 34, no. 4, pp. 389–403.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Koricheva, J., The Carbon-Nutrient Balance Hypothesis is dead; long live the carbon-nutrient balance hypothesis? Oikos, 2002, vol. 98, no. 3, pp. 537–539.CrossRefGoogle Scholar
  31. 31.
    Kraus, T.E.C., Dahlgren, R.A., and Zasoski, R.J., Tannins in nutrient dynamics of forest ecosystems—a review, Plant Soil, 2003, vol. 256, no. 1, pp. 41–66.CrossRefGoogle Scholar
  32. 32.
    Lukina, N.V. and Nikonov, V.V., Biogeokhimicheskie tsikly v lesakh Severa v usloviyakh aerotekhnogennogo zagryazneniya (Biogeochemical Cycles in Northern Soils Under Air Technogenic Pollution), Apatity: Kol’sk. Nauch. Tsentr, Ross. Akad. Nauk, 1996, part 1.Google Scholar
  33. 33.
    Lukina, N.V., Orlova, M.A., Steinnes, E., Artemkina, N.A., Gorbacheva, T.T., Smirnov, V.E., and Belova, E.A., Mass-loss rates from decomposition of plant residues in spruce forests near the northern tree line subject to strong air pollution, Environ. Sci. Pollut. Res., 2017, vol. 24, no. 24, pp. 19874–19887.CrossRefGoogle Scholar
  34. 34.
    Luzikov, A.V., Trofimov, S.Ya., and Zagoskina, N.V., Relationship between pool of ammonium ions in soils and the content of phenolic compounds in spruce needles by example of virgin landscapes of Central Forest Nature Reserve, Vestn. Mosk. Univ., Ser. 17: Pochvoved., 2005, no. 3, pp. 42–47.Google Scholar
  35. 35.
    Makkonen, M., Berg, M.P., Handa, I.T., Hättenschwiler, S., van Ruijven, J., van Bodegom, P.M., and Aerts, R., Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient, Ecol. Lett., 2012, vol. 15, no. 9, pp. 1033–1041.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Manakov, K.N. and Nikonov, V.V., Biologicheskii krugovorot mineral’nykh elementov i pochvoobrazovanie v el’nikakh Krainego Severa (Biological Cycle of Mineral Elements and Pedogenesis in Spruce Forests of Extreme North), Leningrad: Nauka, 1981.Google Scholar
  37. 37.
    Mandre, M., Relationships between lignin and nutrients in Picea abies L. under alkaline air pollution, Water, Air Soil Pollut., 2002, vol. 133, nos. 1–4, pp. 361–377.CrossRefGoogle Scholar
  38. 38.
    Marakaev, O.A., Celebrowsky, M.V., Nikolaeva, T.N., and Zagoskina, N.V., Some aspects of underground organs of spotleaf orchis growth and phenolic compounds accumulation at the generative stage of ontogenesis, Biol. Bull. (Moscow), 2013, vol. 40, no. 3, pp. 281–288.CrossRefGoogle Scholar
  39. 39.
    Matyssek, R., Koricheva, J., Schnyder, H., Ernst, D., Munch, J.C., Oßwald, W., and Pretzsch, H., The balance between resource sequestration and retention: a challenge in plant science, in Growth and Defense in Plants, Ecological Studies Series vol. 220, Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, C., and Pretzsch, H., Eds., Berlin: Springer, 2012, pp. 3–24.CrossRefGoogle Scholar
  40. 40.
    Medvedev, S.S., Fiziologiya rastenii: uchebnik (The Plant Physiology: Manual), St. Petersburg: S.-Peterb. Gos. Univ., 2004.Google Scholar
  41. 41.
    Orlova, M.A., Elementary unit of forest biogeocenotic cover for the assessment of ecosystem functions of forests, Tr. Karel’sk. Nauch. Tsentra, Ser. Ekol. Issled., 2013, no. 6, pp. 126–132.Google Scholar
  42. 42.
    Orlova, M.A., Lukina, N.V., Smirnov, V.E., and Artemkina, N.A., The influence of spruce on acidity and nutrient content in soils of northern taiga dwarf shrub–green moss spruce forests, Eurasian Soil Sci., 2016, vol. 49, no. 11, pp. 1276–1287.CrossRefGoogle Scholar
  43. 43.
    Ossipova, S., Ossipov, V., Haukioja, E., Loponen, J., and Pihlaja, K., Proanthocyanidins of mountain birch leaves: quantification and properties, Phytochem. Anal., 2001, vol. 12, no. 2, pp. 128–133.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Plaksina, I.V., Sudachkova, N.E., Romanova, L.I., and Milyutina, I.L., Seasonal dynamics of phenolic compounds in the bast and needles of Scots pine and Siberian cedar in plantations with different density, Khim. Rastit. Syr’ya, 2009, no. 1, pp. 103–108.Google Scholar
  45. 45.
    Preston, C.M., Nault, J.R., Trofymow, J.A., Smyth, C., and CIDET Working Group, Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions, Ecosystems, 2009, vol. 12, no. 7, pp. 1053–1077.CrossRefGoogle Scholar
  46. 46.
    Rowland, A.P. and Roberts, J.D., Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods, Commun. Soil Sci. Plant Anal., 1994, vol. 25, nos. 3–4, pp. 269–277.CrossRefGoogle Scholar
  47. 47.
    Rummukainen, A., Julkunen-Tiitto, R., Ryyppö, A., Kaunisto, S., Kilpeläinen, J., and Lehto, T., Long-term effects of boron and copper on phenolics and monoterpenes in Scots pine (Pinus sylvestris L.) needles, Plant Soil, 2013, vol. 373, no. 1, pp. 485–499.CrossRefGoogle Scholar
  48. 48.
    Stamp, N., Out of the quagmire of plant defense hypotheses, Q. Rev. Biol., 2003, vol. 78, no. 1, pp. 23–55.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Vasil’ev, S.N., Roshchin, V.I., and Artemkina, N.A., The composition of the water-soluble fraction of extractive substances of wood greens of Picea abies (L.) Karst, Rastit. Resur., 1999a, vol. 35, no. 2, pp. 53–59.Google Scholar
  50. 50.
    Vasil’ev, S.N., Roshchin, V.I., and Artemkina, N.A., Phenolic extractive substances from species of the genus Picea A. Dietr, Rastit. Resur., 1999b, vol. 35, no. 2, pp. 15–31.Google Scholar
  51. 51.
    Vasil’ev, S.N., Kushnikova, E.A., and Artemkina, N.A., The dynamics of the content of extractive substances in wood green of Picea abies (L.) Karst, Rastit. Resur., 2001, vol. 37, no. 1, pp. 49–60.Google Scholar
  52. 52.
    Wam, H.K., Stolter, C., and Nybakken, L., Compositional changes in foliage phenolics with plant age, a natural experiment in boreal forests, J. Chem. Ecol., 2017, vol. 43, no. 9, pp. 920–928.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zaprometov, M.N., Fenol’nye soedineniya: rasprostranenie, metabolizm i funktsii v rasteniyakh (Phenolic Compounds: Distribution, Metabolism, and Functions in the Plants), Moscow: Nauka, 1993.Google Scholar
  54. 54.
    Zhang, D., Hui, D., Luo, Y., and Zhou, G., Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors, J. Plant Ecol., 2008, vol. 1, no. 2, pp. 85–93.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Artemkina
    • 1
    Email author
  • M. A. Orlova
    • 2
  • N. V. Lukina
    • 2
  1. 1.Institute of Industrial Ecology Problems of the North, Kola Science Center, Russian Academy of SciencesApatityRussia
  2. 2.Center for Forest Ecology and Productivity, Russian Academy of SciencesMoscowRussia

Personalised recommendations