Advertisement

Contemporary Problems of Ecology

, Volume 12, Issue 5, pp 491–501 | Cite as

СО2 Fluxes at the Clear-Cut in the Southern Taiga of European Russia

  • V. V. MamkinEmail author
  • V. K. Avilov
  • D. G. Ivanov
  • A. V. Olchev
  • J. A. Kurbatova
Article
  • 21 Downloads

Abstract—

Forest disturbances induced by clear-cutting (CC) lead to the transformation of the natural biogeochemical processes determining the main greenhouse gas fluxes (primarily CO2) between forest ecosystems and the atmosphere. Effects of CC on CO2 exchange substantially vary depending on local environmental and climate conditions. This study focuses on an estimation of the net ecosystem exchange of СО2 (NEE), gross primary production (GPP), and total ecosystem respiration (TER) and soil respiration in the southern taiga in European Russia. The results are based on continuous eddy covariance measurements during two growing seasons (2016 and 2017). The research has shown that CC was a consistent source of CO2 for the atmosphere during the first years following harvest (NEE from May to October is 553.3 gС m–2 in 2016 and 193.3 in 2017). Interannual variability of the cumulative NEE showed increase of GPP (777.5 gС m–2 in 2016 and 1020.5 gС m–2) and decrease of TER (1330.9 gС m–2 in 2016 and 1213.7 gС m–2 in 2017). The results of chamber measurements have shown that soil respiration in the midday hours in summer varied between 3.6 ± 0.7 and 11.8 ± 3.0 μmol m–2 s–1 in 2016 and between 6.0 ± 1.3 and 14.8 ± 3.5 μmol m–2 s–1 in 2017 at the different plots within the clear-cut site. The estimates of the cumulative GPP at the clear-cut in the southern taiga of European Russia exceed the GPP rates obtained previously in the other clear-cut forest ecosystems in boreal and subboreal ecozones.

Keywords:

clear-cut CO2 fluxes carbon cycle southern taiga NEE TER GPP 

Notes

ACKNOWLEDGMENTS

We are grateful K.A. Ermokhina, Senior Researcher at the Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, for making the geobotanical description at the clear-cut.

FUNDING

The study was funded by the Russian Foundation for Basic Research and Russian Geographical Society according to the research project no. 17-05-41127. It was also partially supported by programs of the Presidium of the Russian Academy of Sciences no. 51 “Climate change: causes, risks, consequences, problems of adaptation and regulation” and no. 41 “Biodiversity of natural systems and biological resources of Russia.”

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

REFERENCES

  1. 1.
    Aguilos, M., Takagi, K., Liang, N., Ueyama, M., Fukuzawa, K., Nomura, M., Kishida, O., Fukazawa, T., Takahashi, H., Kotsuka, C., Sakai, R., Ito, K., Watanabe, Y., Fujinuma, Y., Takahashi, Y., et al., Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest, Agric. For. Meteorol., 2014, vol. 197, pp. 26–39.CrossRefGoogle Scholar
  2. 2.
    Alisov, B.P., Klimat SSSR (Climate of USSR), Moscow: Vysshaya Shkola, 1956.Google Scholar
  3. 3.
    Amiro, B.D., Barr, A.G., Black, T.A., Iwashita, H., Kljun, N., McCaughey, J.H., Morgenstern, K., Murayama, S., Nesic, Z., Orchansky, A.L., and Saigusa, N., Carbon, energy and water fluxes at mature and disturbed forest sites, Saskatchewan, Canada, Agric. For. Meteorol., 2006, vol. 136, nos. 3–4, pp. 237–251.CrossRefGoogle Scholar
  4. 4.
    Amiro, B.D., Barr, A.G., Barr, J.G., Black, T.A., Bracho, R., Brown, M., Chen, J., Clark, K.L., Davis, K.J., Desai, A.R., Dore, S., Engel, V., Fuentes, J.D., Goldstein, A.H., Goulden, M.L., et al., Ecosystem carbon dioxide fluxes after disturbance in forests of North America, J. Geophys. Res.: Biogeosci., 2010, vol. 115, no. 4.Google Scholar
  5. 5.
    Aubinet, M., Vesala, T., and Papale, D., Eddy Covariance: A Practical Guide to Measurement and Data Analysis, New York: Springer-Verlag, 2012.CrossRefGoogle Scholar
  6. 6.
    Bergeron, O., Margolis, H.A., Coursolle, C., and Giasson, M.A., How does forest harvest influence carbon dioxide fluxes of black spruce ecosystems in eastern North America? Agric. For. Meteorol., 2008, vol. 148, no. 4, pp. 537–548.CrossRefGoogle Scholar
  7. 7.
    Burba, G., Kurbatova, J., Kuricheva, O., Avilov, V., and Mamkin, V., Handbook for the Method of Turbulent Pulsations, Moscow: LI-COR Biosciences, 2016.Google Scholar
  8. 8.
    Coursolle, C., Margolis, H.A., Giasson, M.A., Bernier, P.Y., Amiro, B.D., Arain, M.A., Barr, A.G., Black, T.A., Goulden, M.L., McCaughey, J.H., Chen, J.M., Dunn, A.L., Grant, R.F., and Lafleur, P.M., Influence of stand age on the magnitude and seasonality of carbon fluxes in Canadian forests, Agric. For. Meteorol., 2012, vol. 165, pp. 136–148.CrossRefGoogle Scholar
  9. 9.
    Desherevskaya, O., Kurbatova, J., and Olchev, A., Climatic conditions of the south part of Valday Hills, Russia, and their projected changes during the 21st century, Open Geogr. J., 2010, vol. 3, pp. 73–79.CrossRefGoogle Scholar
  10. 10.
    Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., Bernhofer, C., Burba, G., Clement, R., Davis, K.J., Elbers, J.A., Goldstein, A.H., Grelle, A., Granier, A., Guðmundsson, J., et al., Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements, Agric. For. Meteorol., 2002, vol. 113, no. 1, pp. 53–74.CrossRefGoogle Scholar
  11. 11.
    Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B.D., and Munger, J.W., Post-field data quality control, in Handbook of Micrometeorology, New York: Springer-Verlag, 2004, pp. 181–208.Google Scholar
  12. 12.
    Giasson, M.-A., Coursolle, C., and Margolis, H.A., Ecosystem-level CO2 fluxes from a boreal cutover in eastern Canada before and after scarification, Agric. For. Meteorol., 2006, vol. 140, no. 1–4, pp. 23–40.CrossRefGoogle Scholar
  13. 13.
    Grant, R.F., Barr, A.G. Black, T.A., Margolis, H.A., McCaughey, J.H., and Trofymow, J.A., Net ecosystem productivity of temperate and boreal forests after clearcutting—a Fluxnet-Canada measurement and modeling synthesis, Tellus B, 2010, vol. 62, no. 5, pp. 475–496.CrossRefGoogle Scholar
  14. 14.
    Hirata, R., Takagi, K., Ito, A., Hirano, T., and Saigusa, N., The impact of climate variation and disturbances on the carbon balance of forests in Hokkaido, Japan, Biogeosciences, 2014, vol. 11, no. 18, pp. 5139–5154.CrossRefGoogle Scholar
  15. 15.
    Humphreys, E.R., Black, T.A., Morgenstern, K., Cai, T., Drewitt, G.B., Nesic, Z., and Trofymow, J.A., Carbon dioxide fluxes in coastal Douglas-fir stands at different stages of development after clearcut harvesting, Agric. For. Meteorol., 2006, vol. 140, nos. 1–4, pp. 6–22.CrossRefGoogle Scholar
  16. 16.
    Ivanov, D.G., Avilov, V.K., and Kurbatova, Yu.A., CO2 fluxes at south taiga bog in the European part of Russia in summer, Contemp. Probl. Ecol., 2017, vol. 10, no. 2, pp. 97–104.CrossRefGoogle Scholar
  17. 17.
    Ivanova, N.S. and Bystrai, G.P., Model of stand structure forming on cuttings, Part 1: Regulating parameters, Agrar. Vestn. Urala, 2010, vol. 71, no. 5, pp. 85–89.Google Scholar
  18. 18.
    Keenan, R.J. and Kimmins, J.P., The ecological effects of clear-cutting, Environ. Rev., 1993, vol. 1, no. 2, pp. 121–144.CrossRefGoogle Scholar
  19. 19.
    Khromov, S.P. and Mamontova, L.I., Meteorologicheskii slovar’ (Meteorological Dictionary), Leningrad: Gidrometeoizdat, 1974.Google Scholar
  20. 20.
    Kolari, P., Pumpanen, J., Rannik, Ü., Ilvesniemi, H., Hari, P., and Berninger, F., Carbon balance of different aged Scots pine forests in Southern Finland, Global Change Biol., 2004, vol. 10, no. 7, pp. 1106–1119.CrossRefGoogle Scholar
  21. 21.
    Kowalski, S., Sartore, M., Burlett, R., Berbigier, P., and Loustau, D., The annual carbon budget of a French pine forest (Pinus pinaster) following harvest, Global Change Biol., 2003, vol. 9, no. 7, pp. 1051–1065.CrossRefGoogle Scholar
  22. 22.
    Kuznetsov, M.A., Emission of CO2 from soil surface on the spruce forest cuttings taking into account of technogenic load (apiary, logging road), Materialy XXIV Vserossiiskoi molodezhnoi nauchnoi konferentsii (s elementami nauchnoi shkoly) posvyashchennaya 55-letiyu Instituta biologii, Komi Nauchnogo Tsentra, UrO, RAN (Proc. XXIV All-Russ. Youth Scientific Conf. (with the Elements of Scientific School) Dedicated to the 55th Anniversary of the Institute of Biology, Komi Scientific Center, Ural Branch, Russian Academy of Sciences), Syktyvkar: Komi Nauchn. Tsentr, Ural. Otd., Ross. Akad. Nauk, 2017, pp. 98–100.Google Scholar
  23. 23.
    Lasslop, G., Reichstein, M., Papale, D., Richardson, A.D., Arneth, A., Barr, A., Stoy, P., and Wohlfahrt, G., Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation, Global Change Biol., 2010, vol. 16, no. 1, pp. 187–208.CrossRefGoogle Scholar
  24. 24.
    Lloyd, J. and Taylor, J.A., On the temperature dependence of soil respiration, Funct. Ecol., 1994, pp. 315–323.Google Scholar
  25. 25.
    Machimura, T., Kobayashi, Y., Hirano, T., Lopez, L., Fukuda, M., and Fedorov, A.N., Change of carbon dioxide budget during three years after deforestation in eastern Siberian larch forest, J. Agric. Meteorol., 2005, vol. 60, no. 5, pp. 653–656.CrossRefGoogle Scholar
  26. 26.
    Mamkin, V., Kurbatova, J., Avilov, V., Ivanov, D., Kuricheva, O., Varlagin, A., Yaseneva, I., and Olchev, A., Energy and CO2 exchange in an undisturbed spruce forest and clearcut in the southern taiga, Agric. For. Meteorol., 2019, vol. 265, pp. 252–268.Google Scholar
  27. 27.
    Matthews, B., Mayer, M., Katzensteiner, K., Godbold, D.L., Schume, H., et al., Turbulent energy and carbon dioxide exchange along an early-successional wind throw chronosequence in the European Alps, Agric. For. Meteorol., 2017, vol. 232, pp. 576–594.Google Scholar
  28. 28.
    Migliavacca, M., Meroni, M., Manca, G., Matteucci, G., Montagnani, L., Grassi, G., Zenone, T., Teobaldelli, M., Goded, I., Colombo, R., and Seufert, G., Seasonal and interannual patterns of carbon and water fluxes of a poplar plantation under peculiar eco-climatic conditions, Agric. For. Meteorol., 2009, vol. 149, no. 9, pp. 1460–1476.CrossRefGoogle Scholar
  29. 29.
    Molchanov, A.G., Kurbatova, Yu.A., and Olchev, A.V., Effect of clear-cutting on soil CO2 emission, Biol. Bull. (Moscow), 2017, vol. 44, no. 2, pp. 218–223.CrossRefGoogle Scholar
  30. 30.
    Olchev, A.V., Mamkin, V.V., Avilov, V.K., Baibar, A.S., Ivanov, D.G., and Kurbatova, Yu.A., Seasonal dynamics of carbon dioxide, sensible and latent heat fluxes on a clear-cut area in the southern taiga zone of European part of Russia, Probl. Ekol. Monit. Model. Ekosist., 2017, vol. 28, no. 4, pp. 5–23.Google Scholar
  31. 31.
    Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B., Rambal, S., Valentini, R., Vesala, T., and Yakir, D., Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation, Biogeosciences, 2006, vol. 3, no. , pp. 571–583.CrossRefGoogle Scholar
  32. 32.
    Paul-Limoges, E., Black, T.A., Christen, A., Nesic, Z., and Jassal, R.S., Effect of clear-cut harvesting on the carbon balance of a Douglas-fir forest, Agric. For. Meteorol., 2015, vol. 203, pp. 30–42.CrossRefGoogle Scholar
  33. 33.
    Pavelka, M., Acosta, M., Marek, M.V., Kutsch, W., and Janous, D., Dependence of the Q10 values on the depth of the soil temperature measuring point, Plant Soil, 2007, vol. 292, nos. 1–2, pp. 171–179.CrossRefGoogle Scholar
  34. 34.
    Pongratz, J., Reick, C. H., Raddatz, T., and Claussen, M., Effects of anthropogenic land cover change on the carbon cycle of the last millennium, Global Biogeochem. Cycles, 2009, vol. 23, no. 4.Google Scholar
  35. 35.
    Puzachenko, Yu.G., Zheltukin, A.S., Kozlov, D.N., Korablev, N.P., Fedyaeva, M.V., Puzachenko, M.Yu., and Siunova, E.V., Tsentral’no-Lesnoi gosudarstvennyi prirodnyi zapovednik: populyarnyi ocherk (Central Forest State Nature Reserve: Popular Essay), Moscow: Delovoi Mir, 2007.Google Scholar
  36. 36.
    Reichstein, M. M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grünwald, T., Harránková, K., Ilvesniemi, H., Janous, D., Knohl A., et al., On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Global Change Biol., 2005, vol. 11, no. 9, pp. 1424–1439.CrossRefGoogle Scholar
  37. 37.
    Rodrigues, A. and Pita, G., Recovery of GPP monthly pattern in a eucalypt site in Portugal after felling, Biogeosci. Discuss., 2011, vol. 2, pp. 3999–4014.CrossRefGoogle Scholar
  38. 38.
    Rybal’chenko, N.G. and Tsaregradskii, P.V., Clearcuts and forest regeneration process in cutover areas, Lesn. Vestn., 2011, no. 3, pp. 4–6.Google Scholar
  39. 39.
    Schulze, E.D., Wirth, C., and Heimann, M., Managing forests after Kyoto, Science, 2000, vol. 289, no. 5487, pp. 2058–2059.CrossRefGoogle Scholar
  40. 40.
    State of the World’s Forests 2011, Rome: UN Food Agric. Org., 2011.Google Scholar
  41. 41.
    Ulanova, N.G., Zhukovskaya, O.V., Kuksina, N.V., and Demidova, A.N., Structure and dynamics of silver birch (Betula pendula Roth.) in calamagrostis epigeios communities on spruce clear-cuts in Kostroma oblast, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 2005, vol. 110, no. 5, pp. 27–35.Google Scholar
  42. 42.
    Urban, O., Klem, K., Ač, A., Havránková, K., Holišova, P., Navrátil, M., Zitová, M., Kozlová, K., Pokorny, R., Šprtova, M., Tomaškova, I., Šprunda, V., and Grace, J., Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy, Funct. Ecol., 2012, vol. 26, no. 1, pp. 46–55.CrossRefGoogle Scholar
  43. 43.
    Williams, C.A., Vanderhoof, M.K., Khomik, M., and Ghimire, B., Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment, Global Change Biol., 2014, vol. 20, no. 3, pp. 992–1007.CrossRefGoogle Scholar
  44. 44.
    Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Sigut, L., Menzer, O., and Reichstein, M., Basic and extensible post-processing of eddy covariance flux data with REddyProc, Biogeosciences, 2018, vol. 15, pp. 5015–5030.CrossRefGoogle Scholar
  45. 45.
    Zamolodchikov, D.G., Grabovskii, V.I., Shulyak, P.P., and Chestnykh, O.V., Recent decrease in carbon sink to Russian forests, Dokl. Biol. Sci., 2017, vol. 476, no. 1, pp. 200–202.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Mamkin
    • 1
    Email author
  • V. K. Avilov
    • 1
  • D. G. Ivanov
    • 1
  • A. V. Olchev
    • 1
    • 2
  • J. A. Kurbatova
    • 1
  1. 1.Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
  2. 2.Faculty of Geography, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations