Contemporary Problems of Ecology

, Volume 12, Issue 5, pp 405–417 | Cite as

Decreased Evolutionary Plasticity as a Result of Phylogenetic Immobilization and Its Ecological Significance

  • A. A. MakhrovEmail author


This review addresses the phylogenetic immobilization phenomenon first described by I.I. Schmalhausen: decreased evolutionary plasticity as a result of stabilizing selection and deleterious mutations with habitat-specific fitness effects. Examples of immobilization are examined and their classification proposed. The role of environmental stability and morphological conservatism in the immobilization development is assessed. The applicability of the immobilization concept for the solution of evolutionary theory issues and the possibility of using immobilization for breeding purposes and the conservation of taxa with low evolutionary plasticity is discussed.


evolution plasticity stasis immobilization routinization relict living fossil extinction 



I am grateful to Yu.P. Altukhov, V.S. Artamonova, I.N. Bolotov, V.E. Gokhman, Yu.Yu. Dgebuadze, Yu.P. Zelinsky, A.G. Kreslavsky, D.L. Lajus, A.B. Savinov, V.M. Spitsyn, V.V. Suslov, and V.S. Fridman for the discussion of topics addressed in this study.


This study was performed in the framework of the state assignment (Topic 6. Ecology and Biodiversity of Aquatic Communities, no. 0109-2018-0076 AAAA-A18-118042490059-5) and partially supported by Program no. 41 “Biodiversity of Natural Systems and Biological Resources of Russia” of the Presidium of the Russian Academy of Sciences and Basic Research Program “Promising Physical and Chemical Technologies of Special Purposes” of the Presidium of the Russian Academy of Sciences (project led by I.N. Bolotov).


Conflict of interests. The author declares that he has no conflict of interest.


  1. 1.
    Alfaro, M.E., Santini, F., Brock, C., Alamillo, H., Dornburg, A., Rabosky, D.L., Carnevale, G., and Harmon, L.J., Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 13410–13414.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Altukhov, Yu.P., Geneticheskie protsessy v populyatsiyakh (Genetic Processes in Populations), Moscow: Akademkniga, 2003, 3rd ed.Google Scholar
  3. 3.
    Amemiya, C.T., Powers, T.P., Prohaska, S.J., Grimwood, J., Schmutz, J., Dickson, M., Miyake, T., Schoenborn, M.A., Myers, R.M., Ruddle, F.H., and Stadler, P.F., Complete HOX cluster characterization of the coelacanth provides further evidence for slow evolution of its genome, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 3622–3627.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Amemiya, C.T., et al., The African coelacanth genome provides insights into tetrapod evolution, Nature, 2013, vol. 496, pp. 311–316.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Artamonova, V.S. and Makhrov, A.A., Unintentional genetic processes in artificially maintained populations: proving the leading role of selection in evolution, Russ. J. Genet., 2006, vol. 42, no. 3, pp. 234–246.CrossRefGoogle Scholar
  6. 6.
    Artamonova, V.S. and Makhrov, A.A., Genetic systems as the regulators of adaptation and speciation processes: theory of microevolution, Trudy konferentsii posvyashchennoi 100-letiyu Gosudarstvennogo Darvinovskogo muzeya “Sovremennye problemy biologicheskoi evolyutsii,” g. Moskva, 17–20 sentyabrya 2007 g. (Proc. Conf. Dedicated to the 100 Anniversary of the State Darwinian Museum “Modern Problems in Biological Evolution,” Moscow, September 17–20, 2007), Moscow, 2008, pp. 381–403.Google Scholar
  7. 7.
    Artamonova, V.S. and Makhrov, A.A., Evolution processes in modern populations, Materialy VIII nauchno-prakticheskoi shkoly dlya molodykh uchenykh i aspirantov po problemam molekulyarnoi ekologii i evolyutsii “Ispol’zovanie molekulyarno-geneticheskikh metodov v issledovaniyakh vodnykh ekosistem i okhrany zdorov’ya cheloveka,” Borok, 25–31 oktyabrya 2015 g. (Proc. VIII Sci.-Pract. School for Young Scientists and Post-Graduate Students on the Molecular Ecology and Evolution “Use of Molecular-Genetic Methods in the Studies of Aquatic Ecosystems and Human Health Protection,” Borok, October 25–31, 2015), Kostroma, 2015, pp. 36–55.Google Scholar
  8. 8.
    Artamonova, V.S. and Makhrov, A.A., The influence of genotype on habitat selection of fish and the analysis of population structure, Knowl. Manage. Aquat. Ecosyst., 2016, vol. 417, no. 3.Google Scholar
  9. 9.
    Artamonova, V.S., Yankovskaya, V.A., Golod, V.M., and Makhrov, A.A., Genetic differentiation of the rainbow trout (Parasalmo mykiss) breeds farming in Russian Federation, Tr. Inst. Biol. Vnutr. Vod im. I.D. Papanina, Ross. Akad. Nauk, 2016, no. 73, pp. 25–45. Google Scholar
  10. 10.
    Artamonova, V.S., Kolmakova, O.V., Kirillova, E.A., and Makhrov, A.A., Phylogeny of salmonoid fishes (Salmonoidei) based on mtDNA COI gene sequences (barcoding), Contemp. Probl. Ecol., 2018, vol. 11, pp. 271–285.Google Scholar
  11. 11.
    Artyukhin, E.N., Osetrovye (ekologiya, geograficheskoe rasprostranenie i filogeniya) (Sturgeons: Ecology, Geographic Distribution, and Phylogeny), St. Petersburg: S.-Peterb. Gos. Univ., 2008.Google Scholar
  12. 12.
    Avise, J.C., Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals, Oxford: Oxford Univ. Press, 2008.CrossRefGoogle Scholar
  13. 13.
    Ayala, F.J., Hedgecock, D., Zumwalt, G.S., and Valentine, J.W., Genetic variation in Tridacna maxima, an ecological analog of some unsuccessful evolutionary lineages, Evolution, 1973, vol. 27, pp. 177–191.PubMedGoogle Scholar
  14. 14.
    Bakhvalova, A.E., Ivanova, T.S., Ivanov, M.V., Demchuk, A.S., Movchan, E.A., and Lajus, D.L., Long-term changes in the role of threespine stickleback (Gasterosteus aculeatus) in the White Sea: predatory fish consumption reflects fluctuating stickleback abundance during the last century, Evol. Ecol. Res., 2016, vol. 17, pp. 317–334.Google Scholar
  15. 15.
    Balashov, D.A., Recoubratsky, A.V., Duma, L.N., Ivanekha, E.V., and Duma, V.V., Fertility of triploid hybrids of Prussian carp (Carassius gibelio) with common carp (Cyprinus carpio L.), Russ. J. Dev. Biol., 2017, vol. 48, no. 5, pp. 347–353.CrossRefGoogle Scholar
  16. 16.
    Bateman, K.G., The genetic assimilation of four venation phenocopies, J. Genet., 1959, vol. 56, pp. 443–474.CrossRefGoogle Scholar
  17. 17.
    Bauer, G., Reproductive strategy of the freshwater pearl mussel Margaritifera margaritifera, J. Anim. Ecol., 1987, vol. 56, pp. 691–704.CrossRefGoogle Scholar
  18. 18.
    Beamish, R.J., Freshwater parasitic lamprey on Vancouver Island and a theory of the evolution of the freshwater parasitic and nonparasitic life history types, in Evolutionary Biology of Primitive Fishes, Foreman, R.E., Gorbman, A., Dodd, J.M., and Olsson, R., Eds., New York: Plenum, 1985, pp. 123–140.Google Scholar
  19. 19.
    Bennett, D.J., Sutton, M.D., and Turvey, S.T., Quantifying the living fossil concept, Palaeontol. Electron., 2018, art. ID 21.1.14A.Google Scholar
  20. 20.
    Birshtein, Ya.A., Definition “a relict” in biology, Zool. Zh., 1947, vol. 26, no. 4, pp. 313–330.Google Scholar
  21. 21.
    Bolotov, I.N., Bespalaya, Yu.V., and Usacheva, O.V., Ecology and evolution of hydrobionts in hot springs of the subarctic and arctic: formation of similar assemblages, adaptation of species, and microevolutionary processes, Biol. Bull. Rev., 2012, vol. 2, no. 4, pp. 340–348.CrossRefGoogle Scholar
  22. 22.
    Bolotov, I.N., Vikhrev, I.V., Aksenova, O.V., Bespalaya, Yu.V., Gofarov, M.Y., Kondakov, A.V., and Sokolova, S.E., Discovery and natural history of the mussel leech Batracobdella kasmiana (Oka, 1910) (Hirudinida: Glossiphoniidae) in Russia, Zootaxa, 2015, vol. 4319, pp. 386–390.CrossRefGoogle Scholar
  23. 23.
    Bolotov, I.N., Aksenova, O.V., Bespalaya, Yu.V., and Spitsyn, V.M., Endemism of freshwater fishe fauna in geothermal regions: a review of molecular-biogeographic studies, Vestn. Sev. (Arkt.) Fed. Univ., Ser.: Estestv. Nauki, 2016a, no. 1, pp. 29–50.Google Scholar
  24. 24.
    Bolotov, I.N., Vikhrev, I.V., Bespalaya Yu.V., Gofarov, M.Y., Kondakov, A.V., Konopleva, E.S., Bolotov, N.N., and Lyubas, A.A., Multi-locus fossil-calibrated phylogeny, biogeography and a subgeneric revision of the Margaritiferidae (Mollusca: Bivalvia: Unionoida), Mol. Phylogenet. Evol., 2016b, vol. 103, pp. 104–121.CrossRefPubMedGoogle Scholar
  25. 25.
    Bolotov, I.N., Aksenova, O.V., Bespalaya, Y.V., Gofarov, M.Y., Kondakov, A.V., Paltser, I.S., Stefansson, A., Travina, O.V., and Vinarski, M.V., Origin of a divergent mtDNA lineage of a freshwater snail species, Radix balthica, in Iceland: cryptic glacial refugia or a postglacial founder event? Hydrobiologia, 2017, vol. 787, pp. 73–98.CrossRefGoogle Scholar
  26. 26.
    Bolotov, I.N., Aksenova O.V., Bakken, T., Glasby, C.J., Gofarov, M.Yu., Kondakov, A.V., Konopleva, E.S., Lopes-Lima, M., Lyubas, A.A., Wang, Yu., Bychkov, A.Yu., Sokolova, A.M., Tanmuangpak, K., Tumpeesuwan, S., Vikhrev, I.V., et al., Discovery of a silicate rock-boring organism and macrobioerosion in fresh water, Nature, 2018, vol. 9, art. ID 2882.Google Scholar
  27. 27.
    Borovikova, E.A. and Malina, J.I., Phylogeography of common whitefish (Coregonus lavaretus L.) of Northwestern Russia, Contemp. Probl. Ecol., 2018, vol. 11, no. 3, pp. 286–296.CrossRefGoogle Scholar
  28. 28.
    Borovikova, E.A. and Makhrov, A.A., Adaptive capabilities of populations and the history of their formation: success in the resettlement of salmon-like fish depends on the size of the glacial refugia, Materialy mezhdunarodnoi konferentsii “Lyubishchevskie chteniya–2014,” Ul’yanovsk, 7–9 aprelya 2014 g. (Proc. Int. Conf. “Lyubishchev’s Readings–2014,” Ulyanovsk, April 7–9, 2014), Ulyanovsk, 2014, pp. 70–76.Google Scholar
  29. 29.
    Carroll, S.P., Facing change: forms and foundations of contemporary adaptation to biotic invasions, Mol. Ecol., 2008, vol. 17, pp. 361–372.CrossRefPubMedGoogle Scholar
  30. 30.
    Casane, D. and Laurenti, P., Why coelacanths are not ‘living fossils’: a review of molecular and morphological data, BioEssays, 2013, vol. 35, pp. 332–338.CrossRefPubMedGoogle Scholar
  31. 31.
    Cavin, L. and Guinot, G., Coelacanths as “almost living fossils”, Front. Ecol. Evol., 2014, vol. 2, art. ID 49, pp. 1–5.Google Scholar
  32. 32.
    Chadov, B.F., Chadova, E.V., Khotskina, E.A., Artemova, E.V., and Fedorova, N.B., The main effect of chromosomal rearrangement is changing the action of regulatory genes, Russ. J. Genet., 2004, vol. 40, no. 7, pp. 723–731.CrossRefGoogle Scholar
  33. 33.
    Chaikovskii, Yu.V., Avtopoez (Autopoiesis), Moscow: KMK, 2018.Google Scholar
  34. 34.
    Chalopin, D., Fan, S., Simakov, O., Meyer, A., Schartl, M., and Volff, J.N., Evolutionary active transposable elements in the genome of the coelacanth, J. Exp. Zool. B, 2014, vol. 322, pp. 322–333.CrossRefGoogle Scholar
  35. 35.
    Clarke, J.T., Lloyd, G.T., and Friedman, M., Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, pp. 11531–11536.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Conrad, M., Adaptability: The Significance of Variability from Molecule to Ecosystems, New York: Plenum, 1983.CrossRefGoogle Scholar
  37. 37.
    Cooper, V.S. and Lenski, R.E., The population genetics of ecological specialization in evolving Escherichia coli populations, Nature, 2000, vol. 407, pp. 736–739.CrossRefPubMedGoogle Scholar
  38. 38.
    Cox, G.W., Alien Species and Evolution, Washington: Island Press, 2004.Google Scholar
  39. 39.
    Crerar, L.D., Crerar, A.P., Domning, D.P., and Parsons, E.C.M., Rewriting the history of an extinction—was a population of Steller’s sea cows (Hydrodamalis gigas) at St Lawrence Island also driven to extinction? Biol. Lett., 2014, vol. 10, art. ID 20140878.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Cuvier, M., Recherches sur les Ossemens Fossiles de Quadrupèdes, Paris: Chez Deterville, 1812, vol. 1.Google Scholar
  41. 41.
    Cuvier, G.M., Discours sur les Révolutions de la Surface du Globe: Et sur les Changements qu’Elles ont Produits dans le Règne Animal, Paris: Chez Ed. d’Ocagne, 1830.Google Scholar
  42. 42.
    Darimont, C.T., Carlson, S.M., Kinnison, M.T., Paquet, P.C., Reimchen, T.E., and Wilmers, C.C., Human predators outpace other agents of trait change in the wild, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 952–954.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Darwin, C., On the Origin of Species by Means of Natural Selection, or the Preservation of Favored Races in the Struggle for Life, London: John Murray, 1859.Google Scholar
  44. 44.
    Davitashvili, L.Sh., Prichiny vymiraniya organizmov (Reasons of Extinction of Organisms), Moscow: Nauka, 1969.Google Scholar
  45. 45.
    de Vries, H., Die Mutationen und die Mutationsperioden bei der Entstehung der Arten, Leipzig: Veit, 1901.Google Scholar
  46. 46.
    de Vries, H., Izbrannye proizvedeniya (Selected Research Works), Moscow: Medgiz, 1932.Google Scholar
  47. 47.
    Dgebuadze, Yu.Yu., Ekologicheskie zakonomernosti izmenchivosti rosta ryb (Ecological Pattern of Growth Variability of Fishes), Moscow: Nauka, 2001.Google Scholar
  48. 48.
    Eldredge, N., Unfinished Synthesis: Biological Hierarchies and Modern Evolutionary Thought, Oxford: Oxford Univ. Press, 1985.Google Scholar
  49. 49.
    Eldredge, N., Thompson, J.N., Brakefield, P.M., Gavrilets, S., Jablonski, D., Jackson, J.B.C., Lenski, R.E., Lieberman, B.S., McPeek, M.A., and Miller, W., III., The dynamics of evolutionary stasis, Paleobiology, 2005, vol. 31, pp. 133–145.CrossRefGoogle Scholar
  50. 50.
    Estes, S. and Arnold, S.J., Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales, Am. Nat., 2007, vol. 169, pp. 227–244.CrossRefPubMedGoogle Scholar
  51. 51.
    Flegr, J., Frozen Evolution, Prague: Charles Univ. Prague, 2008.Google Scholar
  52. 52.
    Franks, S.J. and Hoffmann, A.A., Genetics of climate change adaptation, Annu. Rev. Genet., 2012, vol. 46, pp. 185–208.CrossRefPubMedGoogle Scholar
  53. 53.
    Fryxell, P.A., The “relict species” concept, Acta Biotheor., 1962, vol. 15, pp. 105–118.CrossRefGoogle Scholar
  54. 54.
    Gauze, G.S., Ecology and some problems of species origin, in Ekologiya i evolyutsionnaya teoriya (Ecology and the Theory of Evolution), Leningrad: Nauka, 1984, pp. 5–105.Google Scholar
  55. 55.
    Gilyarov, M.S., About “living fossils,” Zh. Obshch. Biol., 1985, vol. 46, no. 2, pp. 190–200.Google Scholar
  56. 56.
    Goldschmidt R., The Material Basis of Evolution, New Haven: Yale Univ. Press, 1940.Google Scholar
  57. 57.
    Gould, S.J., The Structure of Evolutionary Theory, Cambridge, MA: Harvard Univ. Press, 2002.CrossRefGoogle Scholar
  58. 58.
    Grandcolas, P., Nattier, R., and Trewick, S., Relict species: a relict concept? Trends Ecol. Evol., 2014, vol. 29, pp. 655–663.CrossRefPubMedGoogle Scholar
  59. 59.
    Hall, A.R. and Colegrave, N., Decay of unused characters by selection and drift, J. Evol. Biol., 2008, vol. 21, pp. 610–617.CrossRefPubMedGoogle Scholar
  60. 60.
    Haller, B.C. and Hendry, A.P., Solving the paradox of stasis: squashed stabilizing selection and the limits of detection, Evolution, 2013, vol. 68, pp. 483–500.CrossRefPubMedGoogle Scholar
  61. 61.
    Hansen, T.F. and Houle, D., Evolvability, stabilizing selection, and the problem of stasis, in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes, Piglucci, M. and Preston, K., Eds., Oxford: Oxford Univ. Press, 2004, pp. 130–150.Google Scholar
  62. 62.
    Hay, J.M., Subramanian, S., Millar C.D., Mohandesan, E., and Lambert, D.M., Rapid molecular evolution in a living fossil, Trends Genet., 2008, vol. 24, pp. 106–109.CrossRefPubMedGoogle Scholar
  63. 63.
    Henschel, J.R. and Seely, M.K., Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib Desert, Plant Ecol., 2000, vol. 150, pp. 7–26.CrossRefGoogle Scholar
  64. 64.
    Herrera-Flores, J.A., Stubbs, T.L., and Benton, M.J., Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology, 2017, vol. 60, pp. 319–328.CrossRefGoogle Scholar
  65. 65.
    Ivanov, M.F., New breed of pigs, Ukrainian white steppe bred in Askania-Nova biosphere reserve, in Polnoe sobranie sochinenii (Complete Collection of Research Works), Moscow: Kolos, 1964, vol. 5, pp. 182–195.Google Scholar
  66. 66.
    Kafanov, A.I., Centers of origin and features of ecological evolution of cold-water malacofaunas of the Northern Hemisphere, Biol. Morya (Vladivostok), 1978, no. 1, pp. 3–9.Google Scholar
  67. 67.
    Kalyakin, V.N., The secrets of the former distribution of the Steller’s sea cow, Priroda (Moscow), 2002, no. 6, pp. 6–12.Google Scholar
  68. 68.
    Kaplan, J.M., The paradox of stasis and the nature of explanations in evolutionary biology, Phylos. Sci., 2009, vol. 76, pp. 797–808.Google Scholar
  69. 69.
    Kawecki, T.J., Sympatric speciation via habitat specialization driven by deleterious mutations, Evolution, 1997, vol. 51, pp. 1751–1763.CrossRefPubMedGoogle Scholar
  70. 70.
    Khlebovich, V.V., Ekologiya osobi. Ocherki fenotipicheskikh adaptatsii zhivotnykh (Ecology of a Species: Description of Phenotypic Adaptations of the Animals), St. Petersburg: Zool. Inst., Ross. Akad. Nauk, 2012.Google Scholar
  71. 71.
    Kin, A. and Błaźejowski, B., The horseshoe crab of the genus Limulus: living fossil or stabilomorph? PLoS One, 2014, vol. 9, no. 10, p. e108036.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kirschner, M. and Gerhart, J., Evolvability, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, pp. 8420–8427.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Klishko, O.K., The data on reproductive biology of bivalve mollusks (Margaritiferidae, Unionidae) and their relation with cyprinids (Cyprinidae) in reservoirs of Transbaikalia, Byull. Dal’nevost. Malakol. O-va, 2012, nos. 15–16, pp. 31–55.Google Scholar
  74. 74.
    Kluge, N.J., Cladoendesis and a new look at the evolution of insect metamorphosis, Entomol. Rev., 2012, vol. 92, no. 6, pp. 622–632.CrossRefGoogle Scholar
  75. 75.
    Kolchinskii, E.I., Neokatastrofizm i selektsionizm: vechnaya dilemma ili vozmozhnost’ sinteza? (Istoriko-kriticheskie ocherki) (Neocatastrofism and Selectionism: The Eternal Dilemma or the Possibility of Synthesis? Historical-Critical Essays), St. Petersburg: Nauka, 2002.Google Scholar
  76. 76.
    Kozhov, M.M., Distribution of modern Baikal fauna out of Baikal Lake, Tr. Karel. Fil., Akad. Nauk SSSR, 1956, no. 5, pp. 39–46.Google Scholar
  77. 77.
    Krasnaya kniga Rossiiskoi Federatsii (zhivotnye) (The Red Data Book of Russian Federation: Animals), Moscow: AST-Astrel’, 2001.Google Scholar
  78. 78.
    Kreslavskii, A.G., Sympatric speciation in animals: disruptive selection or ecological segregation? Zh. Obshch. B-iol., 1994, vol. 55, no. 4–5, pp. 404–419.Google Scholar
  79. 79.
    Krieger, J. and Fuerst, P.A., Evidence for a slowed rate of molecular evolution in the order Acipenseriformes, Mol. Biol. Evol., 2002, vol. 19, pp. 891–897.CrossRefPubMedGoogle Scholar
  80. 80.
    Lahti, D.C., Johnson, N.A., Ajie, B.C., Otto, S.P., Hendry, A.P., Blumstein, D.T., Coss, R.G., Donohue, K., and Foster, S.A., Relaxed selection in the wild, Trends Ecol. Evol., 2009, vol. 24, pp. 487–496.CrossRefPubMedGoogle Scholar
  81. 81.
    Lang, M., Hadzhiev, Y., Siegel, N., Amemiya, C.T., Parada, C., Strähle, U., Becker, M.-B., Müller, F., and Meyer A., Conservation of shh cis-regulatory architecture of the coelacanth is consistent with its ancestral phylogenetic position, EvoDevo, 2010, vol. 1, p. 11CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lem, S., The principle of destruction as a creative principle, Priroda (Moscow), 1987, no. 9, pp. 68–77.Google Scholar
  83. 83.
    Levit, G.S. The roots of Evo-Devo in Russia: Is there a characteristic “Russian tradition”? Theory Biosci., 2007, vol. 126, pp. 131–148.CrossRefPubMedGoogle Scholar
  84. 84.
    Living Fossils, Eldredge, N. and Stanley, S.M., Eds., New York: Springer-Verlag, 1984.Google Scholar
  85. 85.
    Lyubishchev, A.A., Problemy formy, sistematiki i evolyutsii organizmov (Problems of Shape, Systematics, and Evolution of Organisms), Moscow: Nauka, 1982.Google Scholar
  86. 86.
    Madlung, A., Polyploidy and its effect on evolutionary success: old questions revisited with new tools, Heredity, 2013, vol. 110, pp. 99–104.CrossRefPubMedGoogle Scholar
  87. 87.
    Makhrov, A.A., A narrowing of the phenotypic diversity range after large rearrangements of the karyotype in Salmonidae: The relationship between saltational genome rearrangements and gradual adaptive evolution, Genes, 2017, vol. 8, p. 297.CrossRefPubMedCentralGoogle Scholar
  88. 88.
    Makhrov, A.A. and Lajus, D.L., Postglacial colonization of the North European seas by Pacific fishes and lamprey, Contemp. Probl. Ecol., 2018, vol. 11, no. 3, pp. 247–258.CrossRefGoogle Scholar
  89. 89.
    Makhrov, A.A., Ponomareva, M.V., Khaimina, O.V., Gilepp, V.E., Efimova, O.V., Nechaeva, T.A., and Vasilenkova, T.I., Abnormal development of gonads of dwarf females and low survival of their offspring as the cause of rarity of resident populations of Atlantic salmon (Salmo salar L.), Russ. J. Dev. Biol., 2013a, vol. 44, no. 6, pp. 326–335.CrossRefGoogle Scholar
  90. 90.
    Makhrov, A.A., Kucheryavyy, A.V., and Savvaitova, K.A., Review on parasitic and non-parasitic forms of the Arctic lamprey Lethenteron camtschaticum (Petromyzontiformes, Petromyzontidae) in the Eurasian Arctic, J. Ichthyol., 2013b, vol. 53, pp. 944–958.CrossRefGoogle Scholar
  91. 91.
    Makhrov, A.A., Bolotov, I.N., and Artamonov, V.S., Ecological reasons and consequences of appearance of taxons with low adaptive potential by example of freshwater pearl mussels (Margaritifera), Tr. Karel. Nauchn. Tsentra, Ross. Akad. Nauk, 2016, no. 12, pp. 68–82.Google Scholar
  92. 92.
    Mathers, T.C., Hammond, R.L., Jenner, R.A., Hanfling, B., and Gómez, A., Multiple global radiations in tadpole shrimps challenge the concept of ‘living fossils’, PeerJ, 2013, vol. 1, p. e62.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Matsuda, R., Animal Evolution in Changing Environments, with Special Reference to Abnormal Metamorphosis, New York: Wiley, 1987.Google Scholar
  94. 94.
    Meien, S.V., Geography of macroevolution of higher plants, Zh. Obshch. Biol., 1987, vol. 48, no. 3, pp. 291–309.Google Scholar
  95. 95.
    Merila, J., Sheldon, B.C., and Kruuk, L.E.B., Explaining stasis: microevolutionary studies in natural populations, Genetics, 2001, vols. 112–113, pp. 199–222.Google Scholar
  96. 96.
    Mina, M.V., Mikroevolyutsiya ryb. Evolyutsionnye aspekty feneticheskogo raznoobraziya (Microevolution of Fishes: Evolutionary Aspects of Phenetic Diversity), Moscow: Nauka, 1986.Google Scholar
  97. 97.
    Mina, M.V., Evolutionary aspects of fishery studies, Tr. VNIRO, 2015, vol. 156, pp. 106–113.Google Scholar
  98. 98.
    Navashin, M.S. and Chuksanova, N.A., Number of chromosomes and evolution, Genetika, 1970, vol. 6, no. 4, pp. 71–83.Google Scholar
  99. 99.
    Naville, M., Chalopin, D., Casane, D., Laurenti, P., and Volff, J.N., The coelacanth: Can a “living fossil” have active transposable elements in its genome? Mobile Genet. Elem., 2015, vol. 5, pp. 55–59.CrossRefGoogle Scholar
  100. 100.
    Nazarov, V.I., Evolyutsiya ne po Darvinu: smena evolyutsionnoi modeli (Non-Darwinian Evolution: Change of Evolutionary Model), Moscow: KomKniga, 2005.Google Scholar
  101. 101.
    Nikolsky, G., The interrelation between variability of characters, effectiveness of energy utilization, and karyotype structure in fishes, Evolution, 1976, vol. 30, pp. 180–185.CrossRefPubMedGoogle Scholar
  102. 102.
    Nikol’skii, G.V., Struktura vida i zakonomernosti izmenchivosti ryb (Structure of a Species and Variability Pattern of Fishes), Moscow: Pishchevaya Prom-st’, 1980.Google Scholar
  103. 103.
    Palumbi, S.R., Evolution Explosion. How Humans Cause Rapid Evolutionary Change, New York: W.W. Norton, 2001.Google Scholar
  104. 104.
    Pererva, V.I., Vozvrashchenie zubra (Bison Return), Moscow: Kolos, 1992.Google Scholar
  105. 105.
    Popov, I.Yu., Aging of species: fact or illusion? Usp. Gerontol., 2008, vol. 21, no. 2, pp. 181–194.Google Scholar
  106. 106.
    Popov, I., Orthogenesis Versus Darwinism, New York: Springer-Verlag, 2018.CrossRefGoogle Scholar
  107. 107.
    Qumsiyeh, M.B., Evolution of number and morphology of mammalian chromosomes, J. Hered., 1994, vol. 85, pp. 455–465.CrossRefPubMedGoogle Scholar
  108. 108.
    Rasnitsyn, A.P., Evolution rates and evolutionary theory: adaptive compromise hypothesis, in Evolyutsiya i biotsenoticheskie krizisy (Evolution and Biocenotic Crisis), Tatarinov, L.P. and Rasnitsyn, A.P., Eds., Moscow: Nauka, 1987, pp. 46–64.Google Scholar
  109. 109.
    Rasnitsyn, A.P., Popular epigenetic evolution, Invertebr. Zool., 2015, vol. 12, no. 1, pp. 103–108.CrossRefGoogle Scholar
  110. 110.
    Relict Species. Phylogeography and Conservation Biology, Habel, J.C. and Assmann, T., Eds., Dordrecht: Springer-Verlag, 2010.Google Scholar
  111. 111.
    Rétaux, S. and Casane, D., Evolution of eye development in the darkness of caves: adaptation, drift, or both? EvoDevo, 2013, vol. 4, p. 26CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Reznick, D., Rodd, H., and Nunney, L., Empirical evidence for rapid evolution, in Evolutionary Conservation Biology, Ferriere, R., Dieckmann, U., and Couvet, D., Eds., Cambridge: Cambridge Univ. Press, 2004, pp. 101–118.Google Scholar
  113. 113.
    Rodendorf, B.B., Phylogenic relicts, Tr. Inst. Morfol. Zhivotn. im. A.N. Severtsova, 1959, no. 27, pp. 41–51.Google Scholar
  114. 114.
    Rollinson, N. and Rowe, L., Persistent directional selection on body size and a resolution to the paradox of stasis, Evolution, 2015, vol. 69. p. 2441–2451.CrossRefPubMedGoogle Scholar
  115. 115.
    Royer, D.L., Hickey, L.J., and Wing, S.L., Ecological conservatism in the “living fossil” Ginkgo, Paleobiology, 2003, vol. 29, pp. 84–104.CrossRefGoogle Scholar
  116. 116.
    Rubtsov, I.A., Irregular temp of evolution, Zh. Obshch. Biol., 1945, vol. 6, no. 6, pp. 411–441.Google Scholar
  117. 117.
    Savinetskii, A.B., Century dynamics of population of mammals and birds of the coast and islands of the Bering Sea over last thousand years, Doctoral (Biol.) Disseration, Moscow: Inst. Ecol. Evol., Russ. Acad. Sci., 2000.Google Scholar
  118. 118.
    Savinov, A.B., Activity of living organisms as a factor of their ontogenesis and evolution, Materialy XXX Lyubishchevskie chteniya “Sovremennye problemy ekologii i evolyutsii” (Proc. XXX Lyubishchev’s Readings “Modern Problems of Ecology and Evolution”), Ulyanovsk, 2017, part 2, pp. 66–73.Google Scholar
  119. 119.
    Schlaepfer, M.A., Runge, M.C., and Sherman, P.W., Ecological and evolutionary traps, Trends Ecol. Evol., 2002, vol. 17, pp. 474–480.CrossRefGoogle Scholar
  120. 120.
    Schmalhausen, I.I., The stability of organic forms (ontogenesis) in their historical development, Zh. Obshch. Biol., 1945, vol. 6, no. 1, pp. 3–25.PubMedGoogle Scholar
  121. 121.
    Schmalhausen, I.I., The study of evolutionary factors: the main forms of natural selection, in Yubileinyi sbornik, posvyashchennyi tridtsatiletiyu Velikoi Oktyabr’skoi sotsialisticheskoi revolyutsii (Jubilee Collection of Scientific Works Dedicated to the 30 Anniversary of the Great October Socialist Revolution), Moscow: Akad. Nauk SSSR, 1947, part 2, pp. 241–266.Google Scholar
  122. 122.
    Schmalhausen, I.I., Stabilizing selection and evolution of individual development, in Izbrannye trudy. Organizm kak tseloe v individual’nom i istoricheskom razvitii (Selected Research Works. Organism as a whole in Individual and Historical Development), Moscow: Nauka, 1982, pp. 348–372.Google Scholar
  123. 123.
    Schmalhausen, I.I., Voprosy darvinizma. Neopublikovannye raboty (Problems of Darwinism: Unpublished Research Works), Moscow: Nauka, 1990.Google Scholar
  124. 124.
    Schopf, T.J.M., Rates of evolution and the notion of “living fossils,” Annu. Rev. Earth Planet. Sci., 1984, vol. 12, pp. 245–292.CrossRefGoogle Scholar
  125. 125.
    Severtsov, A.N., Morfologicheskie zakonomernosti evolyutsii (Morphological Pattern of Evolution), Moscow: Akad. Nauk SSSR, 1939.Google Scholar
  126. 126.
    Severtsov, A.S., About the reasons of evolutionary stasis, Zool. Zh., 2004, vol. 83, no. 8, pp. 927–935.Google Scholar
  127. 127.
    Severtsov, A.S., Evolyutsionnyi stazis i mikroevolyutsiya (Evolutionary Stasis and Microevolution), Moscow: KMK, 2008.Google Scholar
  128. 128.
    Shcherbakov, V.P., Evolution as the barrier for entropy. 1. Mechanisms of species homeostasis, Zh. Obshch. Biol., 2005, vol. 66, no. 3, pp. 195–211.PubMedGoogle Scholar
  129. 129.
    Shcherbakov, V.P., Stasis is inevitable consequence of every successful evolution, Biosemiotics, 2012, vol. 5, pp. 227–245.CrossRefGoogle Scholar
  130. 130.
    Smith, D.G. and Hartel, K.E., Margaritiferidae (Mollusca: Unionoida): possible hosts for Rhodeus (Pisces: Cyprinidae), Pol. Arch. Hydrobiol., 1999, vol. 46, pp. 277–281.Google Scholar
  131. 131.
    Speech of M.V. Mina, in O polozhenii v biologicheskoi nauke. Stenograficheskii otchet sessii VASKhNIL, 31 iyulya–7 avgusta 1948 g. (On the State of Biological Science: Stenographic Report of Session of the All-Union Lenin Academy of Agricultural Sciences, July 31–August 7, 1948), Moscow: Sel’khozgiz, 1948, pp. 221–234.Google Scholar
  132. 132.
    Stanley, S.M., Macroevolution: Patterns and Process, San Francisco: W.H. Freeman, 1979.Google Scholar
  133. 133.
    Stegnii, V.N., Arkhitektonika genoma, sistemnye mutatsii i evolyutsiya (Architectonics of Genome, Systemic Mutations, and Evolution), Novosibirsk: Novosib. Gos. Univ., 1993.Google Scholar
  134. 134.
    Stepien, C.A., Morton, B., Dabrowska, K.A., Guarnera, R.A., Radja, T., and Radja, B., Genetic diversity and evolutionary relationships of the troglodytic ‘living fossil’ Congeria kusceri (Bivalvia: Dreissenidae), Mol. Ecol., 2001, vol. 10, pp. 1873–1879.CrossRefPubMedGoogle Scholar
  135. 135.
    Subramanian, S., Hay, J.M., Mohandesan, E., Millar, C.D., and Lambert, D.M., Molecular and morphological evolution in tuatara are decoupled, Trends Genet., 2009, vol. 25, pp. 16–18.CrossRefGoogle Scholar
  136. 136.
    Suno-Uchi, N., Sasaki, F., Chiba, S., and Kawata, M., Morphological stasis and phylogenetic relationships in Tadpole shrimps, Triops (Crustacea: Notostraca), Biol. J. Linn. Soc., 1997, vol. 61, pp. 439–457.Google Scholar
  137. 137.
    Surov, A., Banaszek, A., Bogomolov, P., Feoktistova, N., and Monecke, S., Dramatic global decrease in the range and reproduction rate of the European hamster Cricetus cricetus, Endangered Species Res., 2016, vol. 31, pp. 119–145.CrossRefGoogle Scholar
  138. 138.
    Takezaki, N. and Nishihara, H., Resolving the phylogenetic position of coelacanth: the closest relative is not always the most appropriate outgroup, Genome Biol. Evol., 2016, vol. 8, pp. 1208–1221.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Terent’eva, E.G., Creating a breed of the rainbow trout Rostal breed: methods and preliminary results, in Problemy tovarnogo vyrashchivaniya lososevykh ryb Rossii (Problems of Commercial Farming of Salmon Fishes in Russia), Murmansk: Polyar. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1995, pp. 36–42.Google Scholar
  140. 140.
    Valentine, J.W., Climatic regulation of species diversification and extinction, Bull. Geol. Soc. Am., 1968, vol. 79, pp. 273–276.CrossRefGoogle Scholar
  141. 141.
    van Valen, L.M., A new evolutionary low, Evol. Theory, 1973, vol. 1, pp. 1–30.Google Scholar
  142. 142.
    Vasil’ev, V.P., Evolyutsionnaya kariologiya ryb (Evolutionary Karyology of Fishes), Moscow: Nauka, 1985.Google Scholar
  143. 143.
    Venkatesh, B., et al., Elephant shark genome provides unique insights into gnathostome evolution, Nature, 2014, vol. 505, pp. 174–179.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Veselov, A.E. and Kalyuzhnyi, S.M., Ekologiya, povedenie i rasprostranenie molodi etlanticheskogo lososya (Ecology, Behavior, and Distribution of Atlantic Salmon Juveniles), Petrozavodsk: Kareliya, 2001.Google Scholar
  145. 145.
    Vezhnovets, V.V., Zaidykov, I.Yu., Naumova, E.Yu., and Sysova, E.A., Biological peculiarities of two copepod species (Crustacea, Copepoda, Calanoida) as possible causes of changes in their geographical ranges, Russ. J. Biol. Invasions, 2012, vol. 3, no. 4, pp. 243–250.CrossRefGoogle Scholar
  146. 146.
    Vorob’eva, E.I. and Feoktistova, N.Yu., A consistent evolutionist: On the 125th anniversary of the birth of Academician I.I. Shmalhausen, Herald Russ. Acad. Sci., 2009, vol. 79, no. 3, pp. 291–300.CrossRefGoogle Scholar
  147. 147.
    Vorontsov, N.N., Razvitie evolyutsionnykh idei v biologii (Development of Evolutionary Concepts in Biology), Moscow: Progress-Traditsiya, 1999.Google Scholar
  148. 148.
    Voss, S.R. and Shaffer, H.B., Evolutionary genetics of metamorphic failure using wild caught vs. laboratory axolotls (Ambystoma mexicanum), Mol. Ecol., 2000, vol. 9, pp. 1401–1407.CrossRefPubMedGoogle Scholar
  149. 149.
    Voss, S.R., Epperlein, H.H., and Tanaka, E.M., Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies, Cold Spring Harbor Protoc., 2009.
  150. 150.
    Wagner, A., The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems, Oxford: Oxford Univ. Press, 2011.CrossRefGoogle Scholar
  151. 151.
    Wagner, G.P. and Draghi, J., Evolution of evolvability, in Evolution, the Extended Synthesis, Pigliucci, M. and Müller, G.B., Eds., London: MIT Press, 2010, pp. 377–399.Google Scholar
  152. 152.
    Wilkens, H. and Strecker, U., Evolution in the Dark: Darwin’s Loss without Selection, Berlin: Springer-Verlag, 2017.CrossRefGoogle Scholar
  153. 153.
    Willis, J.C., The Course of Evolution by Differentiation Or Divergent Mutation Rather Than by Selection, Cambridge: Cambridge Univ. Press, 1940.CrossRefGoogle Scholar
  154. 154.
    Yamazaki, Y. and Goto, A., Molecular phylogeny and speciation of East Asian lampreys (genus Lethenteron) with reference to their life-history diversification, in Lampreys: Biology, Conservation and Control, Docker, M.F., Ed., Dordrecht: Springer-Verlag, 2015, vol. 1, pp. 20–62.Google Scholar
  155. 155.
    Yue, J.-X., Yu, J.-K., Putnam, N.H., and Holland, L.Z., The transcriptome of an Amphioxus, Asymmetron lucayanum, from the Bahamas: a window into chordate evolution, Genome Biol. Evol., 2014, vol. 6, pp. 2681–2696.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Zagorodnyuk, I.V., A species in biology as continuous system, in Fenomen spivisnuvannya dvokh paradigm: kreatsionizmu ta evolyutsionnogo ucheniya (Phenomenon of Coexistence of Two Paradigms: Creationism and Evolutionary Theory), Kyiv: Virii, 2001, pp. 153–181.Google Scholar
  157. 157.
    Zavadskii, K.M. and Kolchinskii, E.I., Evolyutsiya evolyutsii. Istoriko-kriticheskie ocherki problemy (Evolution of Evolution: Historical and Critical Essays of the Problems), Leningrad: Nauka, 1977.Google Scholar
  158. 158.
    Zelinsky, Yu.P. and Makhrov, A.A., Homological series by chromosome number and the genome rearrangements in the phylogeny of Salmonoidei, Russ. J. Genet., 2002, vol. 38, no. 10, pp. 1115–1120.CrossRefGoogle Scholar
  159. 159.
    Zierold, T., Hanfling, B., and Gómez, A., Recent evolution of alternative reproductive modes in the ‘living fossil’ Triops cancriformis, BMC Evol. Biol., 2007, vol. 7, p. 161.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia

Personalised recommendations