Advertisement

Contemporary Problems of Ecology

, Volume 12, Issue 3, pp 265–274 | Cite as

Assessment of the Quality of Bottom Sediments in the Middle Reaches of the Yenisei River by Allium test

  • T. A. ZotinaEmail author
  • E. A. Trofimova
  • Yu. V. Alexandrova
  • O. V. Anishchenko
Article
  • 1 Downloads

Abstract

The harmful potential of bulk bottom sediments of the Yenisei River has been assessed by the Allium test. Sediment samples have been taken in ten sites on a plot of about 100 km in length in the middle reaches of the Yenisei River affected by urban activity of the city of Krasnoyarsk and industrial plants. The samples of sediments differ considerably in the content of potentially toxic substances (heavy metals, artificial radionuclides, and organic pollutants) and nutrients and in physical properties. We use the mean length of onion root as an indicator of general toxicity, the mitotic index as an indicator of cytotoxicity, and the percentage of anatelophase cells in the apical root meristem with abnormal chromosomes as an indicator of genotoxicity. Both the stimulation and inhibition of indicator endpoints are revealed in sediment samples of the Yenisei River relative to the control (artificial sediments). An increased genotoxicity is recorded in the sample of sediments contaminated by a mixture of organic and chemical toxicants. A significant positive correlation between the percentage of abnormal cells and the content of copper and petrochemicals in the samples is revealed. No extremely strong reactions of onion endpoints to the quality of sediment samples are revealed, which is probably related to relatively low contamination of the sediments studied. This is in agreement with the data of chemical analyses. Based on the testing results, we can conclude that the endpoints of the Allium test are sensitive enough to the quality of bottom sediments of the Yenisei River and can be used for their biotesting.

Keywords

ana-telophase genotoxicity root length artificial sediments mitotic index toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We are grateful to the staff of the Laboratory of Radioecology of the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, for the assistance in sampling, experiments, and analyzing data.

References

  1. Arts, G.H.P., Belgers, J.D.M., Hoekzema, C.H., and Thissen, J.T.N.M., Sensitivity of submerged freshwater macrophytes and endpoints in laboratory toxicity tests, Environ. Pollut., 2008, vol. 153, pp. 199–206.CrossRefGoogle Scholar
  2. Bolsunovsky, A. and Bondareva, L., Actinides and other radionuclides in sediments and submerged plants of the Yenisei River, J. Alloy Compd., 2007, vols. 444–445, pp. 495–499.CrossRefGoogle Scholar
  3. Bolsunovskii, A.Ya., Muratova, E.N., Sukovatyi, A.G., Pimenov, A.V., Sanzharaeva, E.A., Zotina, T.A., Sedel’nikova, T.S., Pan’kov, E.V., and Kornilova, M.G., Radioecological monitoring of the Yenisei River and cytogenetic characteristics of aquatic plant Elodea canadensis, Radiats. Biol., Radioekol., 2007, vol. 47, no. 1, pp. 63–73.Google Scholar
  4. Ceesay, M.A., Growth and nitrogen nutrition studies of onions (Allium cepa L.), MSc Thesis, Auckland: Massey Univ., 1980. https://mro.massey.ac.nz/handle/10179/7373.Google Scholar
  5. Clément, B., Devaux, A., Perrodin, Y., Danjean, M., and Ghidini-Fatus, M., Assessment of sediment ecotoxicity and genotoxicity in freshwater laboratory microcosms, Ecotoxicology, 2004, vol. 12, pp. 323–333.CrossRefGoogle Scholar
  6. da Costa, T.C., de Brito, K.C., Rocha, J.A., Leal, K.A., Rodrigues, M.L., Minella, J.P., Matsumoto, S.T., and Vargas, V.M., Runoff of genotoxic compounds in river basin sediment under the influence of contaminated soils, Ecotoxicol. Environ. Saf., 2012, vol. 75, pp. 63–72.CrossRefGoogle Scholar
  7. Dement’ev, D.V., Bolsunovskii, A.Ya., Borisov, R.V., and Trofimov, E.A., The content of heavy metals in bottom sediments of the Yenisei River in the area of Krasnoyarsk city, Izv. Tomsk. Politekh. Univ., 2015, vol. 326, no. 5, pp. 91–98.Google Scholar
  8. Diepens, N.J., Arts, G.H.P., Brock, T.C.M., Smidt, H., van den Brink, P.J., Heuvel-Greve, M.J., and Koelmans, A.A., Sediment toxicity testing of organic chemicals in the context of prospective risk assessment: a review, Crit. Rev. Environ. Sci. Technol., 2014, vol. 44, no. 3, pp. 255–302.CrossRefGoogle Scholar
  9. Evseeva, T.I., Geras’kin, S.A., Shuktomova, I.I., and Taskaev, A.I., Genotoxicity and cytotoxicity assay of water sampled from the underground nuclear explosion site in the north of the Perm region (Russia), J. Environ. Radioact., 2005, vol. 80, pp. 59–74.CrossRefGoogle Scholar
  10. Feiler, U., Höss, S., Ahlf, W., Gilberg, D., Hammers-Wirtz, M., Hollert, H., Meller, M., Neumann-Hensel, H., Ottermanns, R., Seiler, T.B., Spira, D., and Heininger, P., Sediment contact tests as a tool for the assessment of sediment quality in German waters, Environ. Toxicol. Chem., 2013, vol. 32, pp. 144–155.CrossRefGoogle Scholar
  11. Fent, K., Ecotoxicology of organotin compounds, Crit. Rev. Toxicol., 1996, vol. 26, pp. 1–117.CrossRefGoogle Scholar
  12. Firbas, P., A survey of Allium cepa L. Chromosome damage in Slovenian environmental water, soil and rainfall samples, Int. J. Curr. Res. Biosci. Plant Biol., 2015, vol. 2, pp. 62–83.Google Scholar
  13. Firbas, P. and Amon, T., Chromosome damage studies in the onion plant Allium cepa L., Caryologia, 2014, vol. 67, pp. 25–35.Google Scholar
  14. Fiskesjö, G., The Allium test as a standard in environmental monitoring, Hereditas, 1985, vol. 102, pp. 99–112.CrossRefGoogle Scholar
  15. Geras’kin, S., Oudalova, A., Michalik, B., Dikareva, N., and Dikarev, V., Genotoxicity assay of sediment and water samples from the Upper Silesia post-mining areas, Poland by means of Allium-test, Chemosphere, 2011, vol. 83, pp. 1133–1146.CrossRefGoogle Scholar
  16. Haring, H.J., Smith, M.E., Lazorchak, J.M., Crocker, P.A., Euresti, A., Wratschko, M.C., and Schaub, M.C., Comparison of bulk sediment and sediment elutriate toxicity testing methods, Arch. Environ. Contam. Toxicol., 2010, vol. 58, pp. 676–683.CrossRefGoogle Scholar
  17. Höss, S., Ahfl, W., Fahnenstich, C., Gilberg, D., Hollert, H., Melbye, K., Meller, M., Hammers-Wirtz, M., Heininger, P., Neumann-Hensel, H., Ottermanns, R., Ratte, H.-T., Seiler, T.-B., Spira, D., et al., Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination—Determination of toxicity thresholds, Environ. Pollut., 2010, vol. 158, no. 9, pp. 2999–3010.CrossRefGoogle Scholar
  18. Karta reki Enisei ot Krasnoyarskoi GES do ust’ya reki Angara (The Map of Yenisei River from Krasnoyarsk HPP until the Mouth of the Angara River), St. Petersburg: Volgo-Balt, 2008.Google Scholar
  19. Kovalchuk, O., Kovalchuk, I., Arkhipov, A., Telyuk, P., Hohn, B., and Kovalchuk, L., The Allium cepa chromosome aberration test reliably measures genotoxicity of soils of inhabited areas in the Ukraine contaminated by the Chernobyl accident, Mutat. Res., 1988, vol. 415, pp. 47–57.CrossRefGoogle Scholar
  20. Leme, D.M. and Marin-Morales, M.A., Allium cepa test in environmental monitoring: a review on its application, Mutat. Res., 2009, vol. 682, pp. 71–81.CrossRefGoogle Scholar
  21. MacDonald, D.D., Ingersol, C.G., and Berger, T.A., Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Arch. Environ. Contam. Toxicol., 2000, vol. 39, pp. 20–31.CrossRefGoogle Scholar
  22. Mateuca, R., Lombaert, N., Aka, P.V., Decordier, I., and Kirsch-Volders, M., Chromosomal changes: induction, detection methods and applicability inhuman biomonitoring, Biochimie, 2006, vol. 88, pp. 1515–1531.CrossRefGoogle Scholar
  23. Medvedeva, M.Yu., Bolsunovsky, A.Ya., and Zotina, T.A., Cytogenetic abnormalities in aquatic plant Elodea canadensis in anthropogenic contamination zone of Yenisei River, Contemp. Probl. Ecol., 2014, vol. 7, pp. 422–432.CrossRefGoogle Scholar
  24. Mitteregger, H., Jr., da Silva, J., Arenson, A., Portela, C.S., Fernandes de Sá Ferreira, I.C., and Henriques, J.A.P., Evaluation of genotoxicity and toxicity of water and sediment samples from a Brazilian stream influenced by tannery industries, Chemosphere, 2007, vol. 67, pp. 1211–1217.CrossRefGoogle Scholar
  25. Mothersill, C. and Austin, B., In Vitro Methods in Aquatic Ecotoxicology, Berlin: Springer-Verlag, 2003.Google Scholar
  26. Muratova, E.N., Goryachkina, O.V., Kornilova, M.G., Pimenov, A.V., Sedelnikova, T.S., and Bolsunovsky, A.Ya., Cytogenetic studies on submerged plants from the Yenisei River area in the zone of radioactive contamination, Biol. Bull. (Moscow), 2014, vol. 41, no. 5, pp. 461–467.CrossRefGoogle Scholar
  27. Seth, C.S., Mirsa, V., Chauhan, L.K.S., and Singh, R.R., Genotoxicity of cadmium on root meristem cells of Allium cepa: cytogenetic and Comet assay approach, Ecotoxicol. Environ. Saf., 2008, vol. 71, pp. 711–716.CrossRefGoogle Scholar
  28. Sukhorukov, F.V., Degermendzhi, A.G., Belolipetskii, V.M., Bolsunovskii, A.Ya., Kovalev, S.I., Kosolapova, L.G., Mel’gunov, M.S., and Raputa, V.F., Zakonomernosti raspredeleniya i migratsii radionuklidov v doline r. Enisei (Distribution Pattern and Migration of Radionuclides in the Valley of the Yenisei River), Novosibirsk: Geo, 2004.Google Scholar
  29. Türkoğlu, Ş., Determination of genotoxic effects of chlorfenvinphos and fenbuconazole in Allium cepa root cells by mitotic activity, chromosome aberration, DNA content, and comet assay, Pestic. Biochem. Physiol., 2012, vol. 103, pp. 224–230.CrossRefGoogle Scholar
  30. Udalova, A.A., Geras’kin, S.A., Dikarev, V.G., and Dikareva, N.S., Evaluation of cytological and genetoxicity of natural waters in the area of dump of radioactive wastes using Allium test, Radiats. Biol., Radioekol., 2014, vol. 54, no. 1, pp. 97–106.Google Scholar
  31. Yıldız, M. and Arikan, E.S., Genotoxicity testing of quizalofop-P-ethylherbicide using the Allium cepa anaphase-telophase chromosome aberration assay, Caryologia, 2008, vol. 61, pp. 45–52.CrossRefGoogle Scholar
  32. Yildiz, M., Ciğerci, I.H., Konuk, M., Fidan, A.F., and Terzi, H., Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays, Chemosphere, 2009, vol. 75, pp. 934–938.CrossRefGoogle Scholar
  33. Zotina, T.A., Trofimova, E.A., Bolsunovsky, A.Ya., and Anishenko, O.V., Experimental estimation of the possible use of submersed macrophytes for biotesting bottom sediments of the Yenisei River, Contemp. Probl. Ecol., 2014, vol. 7, no. 4, pp. 410–421.CrossRefGoogle Scholar
  34. Zotina, T., Medvedeva, M., Trofimova, E., Alexandrova, Yu., Dementyev, D., and Bolsunovsky, A., Chromosomal abnormalities in roots of aquatic plant Elodea canadensis as a tool for testing genotoxicity of bottom sediments, Ecotoxicol. Environ. Saf., 2015a, vol. 122, pp. 384–391.CrossRefGoogle Scholar
  35. Zotina, T.A., Trofimova, E.A., Medvedeva, M.Yu., Dementyev, D.V. and Bolsunovsky, A.Ya., Use of the aquatic plant Elodea canadensis to assess toxicity and genotoxicity of Yenisei River sediments, Environ. Toxicol. Chem., 2015b, vol. 34, pp. 2310–2321.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. A. Zotina
    • 1
    Email author
  • E. A. Trofimova
    • 1
  • Yu. V. Alexandrova
    • 1
  • O. V. Anishchenko
    • 1
  1. 1.Institute of Biophysics, Federal Research Center Krasnoyarsk Scientific Center, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations