Advertisement

Contemporary Problems of Ecology

, Volume 12, Issue 3, pp 245–253 | Cite as

Dynamics of Species and Size Structures of Phytoplankton at Different Levels of Bottom-Up and Top-Down Effects in Experimental Conditions

  • E. G. SakharovaEmail author
  • I. Yu. Feniova
  • Z. I. Gorelysheva
  • M. Rzepecki
  • I. Kostshevska-Shlakovska
  • A. V. Krylov
  • N. S. Zilitinkevicz
Article

Abstract

An experimental study of the impacts of trophic conditions and the activity of zooplankton and fish on the phytoplankton structure has shown that, at the beginning of the experiment, the species and size structures of algae were dependent on the N : P ratio. This parameter causes the differences in phytoplankton structures between mesotrophic and eutrophic conditions so that, in mesotrophic conditions, the dominant taxa are diatoms, dinoflagellates and chrysophytes while, in eutrophic mesocosms, cyanobacteria are most abundant. Later on, the differences in N : P ratio in the treatments are smoothed out and the dominance shifts to large filamentous green algae. Fish reduce zooplankton control over phytoplankton, thus promoting the development of edible diatoms; this is most clearly manifested in eutrophic conditions.

Keywords

phytoplankton zooplankton fish mesotrophic and eutrophic waters N : P ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babanazarova, O.V., Kurmayer, R., Sidelev, S.I., Alexandrina, A.M., and Sakharova, E.G., Phytoplankton structure and microcystine concentration in the highly eutrophic Nero Lake, Water Resour., 2011, vol. 38, no. 2, pp. 229–236.CrossRefGoogle Scholar
  2. Balushkina, E.V. and Vinberg, G.G., Dependence between length and weight of the body of planktonic crustacean and rotifers, in Ekologo-fiziologicheskie osnovy izucheniya vodnykh ekosistem (Ecological and Physiological Basis for the Analysis of Aquatic Ecosystems), Leningrad: Nauka, 1979, pp. 169–172.Google Scholar
  3. Brabrand, A., Faafeng, B., Källqvist, T., and Nilssen, P.J., Can iron defecation from fish influence phytoplankton production and biomass in eutrophic lakes? Limnol. Oceanogr., 1984, vol. 29, pp. 1330–1334.CrossRefGoogle Scholar
  4. Burns, C.W., The relationship between the body size of filter-feeding Cladocera and the maximum size of particle ingestion, Limnol. Oceanogr., 1968, vol. 13, pp. 675–678.CrossRefGoogle Scholar
  5. Carrick, H.J. and Lowe, R.L., Benthic algal response to N and P enrichment along a pH gradient, Hydrobiologia, 1989, vol. 119–127, p. 179.Google Scholar
  6. Cattaneo, A., Periphyton in lakes of different trophy, Can. J. Fish. Aquat. Sci., 1987, vol. 44, pp. 296–303.CrossRefGoogle Scholar
  7. Chen, Y., Qin, B., Teubner, K., and Dokulil, M.T., Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China, J. Plankton Res., 2003, vol. 25, pp. 445–453.CrossRefGoogle Scholar
  8. Datsenko, Yu.S., Evtrofirovanie vodokhranilishch. Gidrologogidrokhimicheskie aspekty (Eutrophication of Reservoirs: Hydrological and Hydrochemical Aspects), Moscow: GEOS, 2007.Google Scholar
  9. Declerck, S. and De Meester, L., Impact of fish predation on coexisting Daphnia taxa: a partial test of the temporal hybrid superiority hypothesis, Hydrobiologia, 2003, vol. 500, nos. 1–3, pp. 83–94.CrossRefGoogle Scholar
  10. Downing, J.A., Watson, S.B., and McCauley, E., Predicting Cyanobacteria dominance in lakes, Can. J. Fish. Aquat. Sci., 2001, vol. 58, pp. 1905–1908.  https://doi.org/10.1139/cjfas-58-10-1905 CrossRefGoogle Scholar
  11. Feniova, I.Yu., Razlutskii, V.I., and Palash, A.L., The influence of raptorial behavior and competitiveness on the species structure of communities of Cladocera, Biol. Vnutr. Vod, 2007, no. 3, pp. 41–47.Google Scholar
  12. Feniova, I., Dawidowicz, P., Gladyshev, M.I., Kostrzewska-Szlakowska, I., Rzepecki, M., Razlutskij, V., Sushchik, N.N., Majsak, N., and Dzialowski, A.R., Experimental effects of large-bodied Daphnia, fish and zebra mussels on Cladoceran community and size structure, J. Plankton Res., 2015, vol. 37, pp. 611–625.  https://doi.org/10.1093/plankt/fbv022 CrossRefGoogle Scholar
  13. Feniova, I.Y., Petrosyan, V.G., Rzepecki, M., Kostrzewska-Szlakowska, I., Zilitinkevicz, N.S., Krylov, A.V., Majsak, N.N., Razlutskij, V.I., and Dzialowski, A.R., Experimental impacts of fish on small and large Cladocerans under eutrophic conditions, Inland Water Biol., 2016, vol. 9, no. 4, pp. 375–381.CrossRefGoogle Scholar
  14. Fott, J., Desortova, B., and Hrbáček, J., A comparison of the growth of flagellates under heavy grazing stress with a continuous culture, Proc. 7th Symp. “Continuous Cultivation of Microorganisms,” Prague, 1980, pp. 395–401.Google Scholar
  15. Gerrath, J.F., Conjugating green algae and desmids, in Freshwater Algae of North America. Ecology and Classification, Amsterdam: Elsevier, 2003, pp. 353–381.CrossRefGoogle Scholar
  16. Gliwicz, Z.M., On the different nature of top-down and bottom-up effects in pelagic food webs, Freshwater Biol., 2002, vol. 47, pp. 2296–2312.CrossRefGoogle Scholar
  17. Gliwicz, Z.M., Ghilarov, A., and Pijanowska, J., Food and predation as major factors limiting two natural populations of Daphnia cucullata Sars, Hydrobiologia, 1981, pp. 80, vol. 205–218.Google Scholar
  18. Havens, K.E., James, R.T., East, T.L., and Smith, V.H., N: P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution, Environ. Pollut., 2003, vol. 122, no. 3, pp. 379–390.CrossRefGoogle Scholar
  19. Ilmavirta, V., Dynamics of phytoplanktonic production in the oligotrophic Lake Pääjärvi, southern Finland, Ann. Bot. Fenn., 1975, vol. 12, pp. 45–54.Google Scholar
  20. John, D.M., Filamentous and plantlike Green algae, in Freshwater Algae of North America. Ecology and Classification, Amsterdam: Elsevier, 2003, pp. 311–352.CrossRefGoogle Scholar
  21. Kolmakov, V.I. and Gladyshev, M.I., Growth and potential photosynthesis of cyanobacteria are stimulated by viable gut passage in crucian carp, Aquat. Ecol., 2003, vol. 37, pp. 237–242.CrossRefGoogle Scholar
  22. Korinek, V., Fott, J., Fuksa, J., Lellak, J., and Prazakova, M., Carp ponds in Central Europe, in Managed Aquatic Ecosystems, Amsterdam: Elsevier, 1987, pp. 29–62.Google Scholar
  23. Korneva, L.G., Fitoplankton vodokhranilishch basseina Volgi (Phytoplankton of the Volga River Basin), Kostroma: Kostromsk. Pechat. Dvor, 2015.Google Scholar
  24. Kuz’min, G.V., Phytoplankton, in Metodika izucheniya biogeotsenoza vnutrennikh vodoemov (The Method of Analysis of Biogeocenosis of Inland Reservoirs), Moscow: Nauka, 1975, pp. 73–87.Google Scholar
  25. Lampert, W., Fleckner, W., Rai, H., and Taylor, B.E., Phytoplankton control by grazing zooplankton: a study on the spring clear-water phase, Limnol. Oceanogr., 1986, vol. 31, pp. 478–490.CrossRefGoogle Scholar
  26. Levich, A.P. and Bulgakov, I.G., Biogenic elements in environment and phytoplankton: ratio of nitrogen to phosphorus as independent regulating factor, Usp. Sovrem. Biol., 1995, vol. 15, no. 1, p. 13.Google Scholar
  27. Lyashenko, O.A., Comparative analysis of planktonic algological flora from the Nero and Pleshcheevo lakes, Bot. Zh., 2003, vol. 88, no. 3, p. 30.Google Scholar
  28. McQueen, D.J. and Lean, D.R.S., Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario, Can. J. Fish. Aquat. Sci., 1987, vol. 44, no. 3, pp. 598–604.CrossRefGoogle Scholar
  29. Naselli-Flores, L. and Barone, R., Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state, Hydrobiologia, 2000, vol. 438, pp. 65–74.CrossRefGoogle Scholar
  30. Negro, A.I., De Hoyos, C., and Vega, J.C., Phytoplankton structure and dynamics in Lake Sanabria and Valparaíso reservoir (NW Spain), Hydrobiologia, 2000, vol. 424, pp. 25–37.CrossRefGoogle Scholar
  31. Nixdorf, B., Mischke, U., and Rücker, J., Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes—an approach to differentiate the habitat properties of Oscillatoriales, Hydrobiologia, 2003. V502, pp. 111–121.CrossRefGoogle Scholar
  32. Petrosyan, V.G., RF Inventor’s Certificate no. 2014663194, 2014. http://www1.fips.ru/fips_servl/fips_servlet?DB=EVM&DocNumber=2014663194&TypeFile=html.
  33. Phytoplankton Analyzer PHYTO-PAM and Phyto-Win Software V. 1.45: System Components and Principles of Operation, Effeltrich: Heinz Walz, 2003.Google Scholar
  34. Reynolds, C.S., Huszar, V., Kruk, C. Naselli-Flotes, L., and Melo, S., Towards a functional classification of the freshwater phytoplankton, J. Plankton Res., 2002, vol. 24, no. 5, pp. 417–428.CrossRefGoogle Scholar
  35. Rosen, G., Phytoplankton indicators and their relations to certain chemical and physical factors, Limnologica, 1981, vol. 13, pp. 2263–2290.Google Scholar
  36. Sakharova, E.G. and Korneva, L.G., Phytoplankton in the littoral and pelagial zones of the Rybinsk Reservoir in years with different temperature and water-level regimes, Inland Water Biol., 2018, vol. 11, no. 1, pp. 6–12.CrossRefGoogle Scholar
  37. Schindler, D.W., Whole-lake eutrophication experiments with phosphorus, nitrogen, and carbon, Verh. Int. Ver. Limnol., 1975, vol. 19, pp. 3221–3231.Google Scholar
  38. Semenchenko, V.P., Razlutskij, V.I., Feniova, I.Yu., and Aibulatov, D.N., Biotic relations affecting species structure in zooplankton communities, Hydrobiologia, 2007, vol. 579, pp. 219–231.CrossRefGoogle Scholar
  39. Simons, J., Field ecology of freshwater macroalgae in pools and ditches, with special attention to eutrophication, Neth. J. Aquat. Ecol., 1994, vol. 28, no. 1, pp. 25–33.CrossRefGoogle Scholar
  40. Standard Methods for the Examination of Water and Waste-water, Washington: Am. Publ. Health Assoc., 2005.Google Scholar
  41. Trifonova, I.S., Phytoplankton composition and biomass structure in relation to trophic gradient in some temperate and subarctic lakes of northwestern Russia and the Pre-Baltic, Hydrobiologia, 1998, vols. 369–370, pp. 99–108.CrossRefGoogle Scholar
  42. Watson, S. and Kalff, J., Relationships between nanoplankton and lake trophic status, Can. J. Fish. Aquat. Sci., 1981, vol. 38, pp. 960–967.CrossRefGoogle Scholar
  43. Wiśniewska, M., Krupa, D., Pawlik-Skowrońska, B., and Kornijów, R., Development of toxic Planktothrix agardhii (Gom.) Anagn. et Kom. and potentially toxic algae in the hypertrophic Lake Syczynskie (Eastern Poland), Oceanol. Hydrobiol. Stud., 2007, vol. 36, pp. 173–179.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. G. Sakharova
    • 1
    Email author
  • I. Yu. Feniova
    • 2
  • Z. I. Gorelysheva
    • 3
  • M. Rzepecki
    • 4
  • I. Kostshevska-Shlakovska
    • 5
  • A. V. Krylov
    • 1
  • N. S. Zilitinkevicz
    • 6
  1. 1.Papanin Institute for Biology of Inland WatersRussian Academy of SciencesBorokRussia
  2. 2.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  3. 3.Scientific and Practical Center for BioresourcesNational Academy of Sciences of BelarusMinskBelarus
  4. 4.Hydrobiological StationNencki Institute of Experimental BiologyMikołajkiPoland
  5. 5.Faculty of BiologyUniversity of WarsawWarsawPoland
  6. 6.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations