Contemporary Problems of Ecology

, Volume 11, Issue 7, pp 771–778 | Cite as

Role of Fine Tree Roots in the Nitrogen Cycle of Boreal Forests

  • S. M. RazgulinEmail author
  • L. V. Voronin


Despite the insignificant contribution to the total forest phytomass, fine roots form 30% of the production of forest ecosystems, playing a crucial role in biogeochemical cycles. However, estimates of the biomass, annual production, dieback, and age of fine roots remain understudied, especially in Russian forests, due to technical difficulties. There are only a few estimates of nitrogen consumption for the annual production of fine roots. It is believed that they comprise up to 75 kg N ha–1 in mature forests. This is up to 60% of the total consumption of nitrogen for annual yield and is comparable with mineralized soil nitrogen. However, these values are approximate because the methods of measuring fine roots production are debatable.


fine roots biomass production debris turnover period nitrogen cycle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, C.P., Phillips, D.L., Rygyewich, P.T., and Storm, M.J., Fine root growth and mortality in different-aged ponderosa pine stands, Can. J. For. Res., 2008, vol. 38, pp. 1797–1806.CrossRefGoogle Scholar
  2. Blume-Werry, G., The hidden life of plants: fine root dynamics in northern ecosystems, PhD Thesis, Ulmea: Umea Univ., 2016.Google Scholar
  3. Brunner, L., Bakker, M., Bjork, R., Hirano, Y., Lukas, M., Aranda, X., Borja, L., Elhused, T., Helmisaari, H., Jourdan, C., Konopka, B., Lopez, B., Miguel Perez, C., Persson, H., and Ostonen, L., Fine-root turnover rates of European forest revisited: an analysis of date from sequential coring and ingrowth cores, Plant Soil, 2013, vol. 362, pp. 357–372.Google Scholar
  4. Burke, M. and Raynal, D., Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem, Plant Soil, 1994, vol. 162, pp. 135–146.CrossRefGoogle Scholar
  5. Comeau, P. and Kimmins, J., Above-and below-ground biomass and production of lodge pole pine on sites witch differing soil moisture regimes, Can. J. For. Res., 1989, vol. 19, pp. 447–454.CrossRefGoogle Scholar
  6. Ekosistemy Tellermanovskogo lesa (Ecosystems of the Tellermann Forest), Osipov, V.V., Ed., Moscow: Nauka, 2004.Google Scholar
  7. Faktory regulyatsii ekosistem elovykh lesov (Regulation Factors of Ecosystems of Spruce Forests), Karpov, V.G., Ed., Leningrad: Nauka, 1983.Google Scholar
  8. Finer, L., Messier, C., and Gianpre, L., Fine root dynamics in mixed boreal conifer–broad-leafed forest stands at different successional stages after fire, Can. J. For. Res., 1997, vol. 27, pp. 304–314.CrossRefGoogle Scholar
  9. Finer, L., Ohashi, M., Noguchi, K., and Hirano, Y., Fine root production and environmental characteristics, For. Ecol. Manage., 2011, vol. 262, pp. 2009–2023.Google Scholar
  10. Gill, R. and Jackson, R., Global patterns of root turnover for terrestrial ecosystems, New Phytol., 2000, vol. 147, pp. 13–31.CrossRefGoogle Scholar
  11. Godbold, D., Fritz, H., Jentschke, G., Meesenburg, H., and Rademacher, P., Root turnover and root necromass accumulation of Norway spruce (Picea abies) are affected by soil acidity, Tree Physiol., 2003, vol. 23, pp. 915–921.CrossRefGoogle Scholar
  12. Gordon, W. and Jackson, R., Nutrient concentrations in fine roots, Ecology, 2000, vol. 81, pp. 275–280.CrossRefGoogle Scholar
  13. Grygoruk, D., Root biomass of Fagus sylvatica L., stands depending on the climatic conditions, Folia For. Pol., Ser. A, 2016, vol. 58, no. 4, pp. 220–227.Google Scholar
  14. Helmisaari, H.-S., Makkonen, K., Kellomaki, S., Valtonen, E., and Malkonen, E., Below-and aboveground biomass, production and nitrogen use in Scots pine stands in eastern Finland, For. Ecol. Manage., 2002, vol. 165, pp. 317–326.CrossRefGoogle Scholar
  15. Hendrick, R. and Pregitzer, K., The dynamics of fine root length, biomass, and nitrogen content in two northern hardwood ecosystems, Can. J. For. Res., 1993, vol. 23, pp. 2507–2520.CrossRefGoogle Scholar
  16. Hendrick, J., Hendrick, R., Wilson, C., Mitchell, R., Pecot, S.W., and Guo, D., Assessing the patterns and controls of fine root dynamics: an empirical test and methodological review, J. Ecol., 2006, vol. 94, pp. 40–57.CrossRefGoogle Scholar
  17. Hertel, D., Strecker, T., Muller-Hauboid, H., and Leuschner, C., Fine root biomass and dynamics in beech forests across a precipitation gradient—is optimal resource partitioning theory applicable to water-limited mature trees? J. Ecol., 2013, vol. 101, pp. 1183–1200.CrossRefGoogle Scholar
  18. Kazimirov, N.I. and Morozova, R.M., Biologicheskii krugovorot veshchestv v el’nikakh Karelii (Biological Cycle of the Substances in Spruce Forests of Karelia), Leningrad: Nauka, 1973.Google Scholar
  19. Keyes, M. and Grier, C., Above-and below-ground net production in 40-year old Douglas-fir stands on low and high productivity sites, Can. J. For. Res., 1981, vol. 11, pp. 599–605.CrossRefGoogle Scholar
  20. Konopko, B., Janssens, I., Curiel, J., and Chulemans, R., Fine root turnover in a temperate scoots pine forest, For. J., 2006, vols. 1–2, pp. 107–117.Google Scholar
  21. Konopko, B., Pajtick, J., and Malova, M., Fine root standing stock and production young beech and spruce stands, For. J., 2013, vol. 59, pp. 163–171.Google Scholar
  22. Kubisch, P., Hertel, D., and Leuschner, C., Fine root productivity and turnover of ectomycorrhizal and arbuscular mycorrhizal tree species in a temperate broadleaved mixed forest, Front. Plant Sci., 2016, vol. 7, pp. 1–12.CrossRefGoogle Scholar
  23. Lashchinskii, N.N., Struktura i dinamika sosnovykh lesov Nizhnego Priangar’ya (The Structure and Dynamics of Pine Forests of Lower Angara Region), Novosibirsk: Nauka, 1981.Google Scholar
  24. Lukas, M. and Goodbold, D., Fine root biomass and turnover in southern taiga estimated by root inclusion nets, Plant Soil, 2010, vol. 331, pp. 505–513.CrossRefGoogle Scholar
  25. Majdi, H. and Anderson, P., Fine root production and turnover in a Norway spruce stand in northern Sweden: Effects of nitrogen and water manipulation, Ecosystems, 2005, vol. 8, pp. 191–199.CrossRefGoogle Scholar
  26. Majdi, H., Pregitzer, K., Moreim, A.-S., Nyland, J.-E, and Agren, G., Measuring fine root turnover in forest ecosystems, Plant Soil, 2005, vol. 276, pp. 1–8.CrossRefGoogle Scholar
  27. Mamaev, V.V., Root mass in the pine and sorrel-blueberry birch forests, in Lesovodstvennye issledovaniya v podzone yuzhnoi taigi (Forestry Studies in Southern Taiga Subzone), Moscow: Nauka, 1977, pp. 61–67.Google Scholar
  28. Masilevich, N.A., Ecological and physiological features of the root systems of wood plants depending on growing conditions, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Minsk: Kuprevich Inst. Exp. Bot., 1990.Google Scholar
  29. Matamala, R., Gonsalez, M., Jastrow, J., Norbi, R., and Schlesinger, W., Impact of fine root turnover on forest NPP and soil C sequestration potential, Science, 2003, vol. 302, pp. 1385–1387.CrossRefGoogle Scholar
  30. McClaugherty, C., Aber, J., and Mellilo, J., The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems, Ecology, 1982, vol. 63, pp. 1481–1490.CrossRefGoogle Scholar
  31. McCormack, M., Adams, T., Smithwick, E., and Eissenstat, D., Variability in root production, phenology, and turnover rate among 12 temperate tree species, Ecology, 2014, vol. 95, pp. 2224–2235.CrossRefGoogle Scholar
  32. McCormack, M., Dickie, I., Eissenstat, D., Fahey, T., Fernandez, C., Guo, D., Helmisaari, H-S., Hobbie, E., Iversen, C., Jackson, R., Leppelammi-Kujansuu, J., Norby, R., Phillips, R., Pregitzer, K., Pritchard, S., et al., Redefining fine roots improves understanding of below–ground contributions to terrestrial biosphere processes, New Phytol., 2015, vol. 207, pp. 505–518. Measuring Roots, Mancuso, S., Ed., Berlin: Springer-Verlag, 2012.CrossRefGoogle Scholar
  33. Meinen, C., Hertel, D., and Leuscher, C., Root growth and recovery in temperate broadleaved forest stands differing in tree species diversity, Ecosystems, 2009, vol. 12, pp. 1103–1116.CrossRefGoogle Scholar
  34. Nadelhoffer, K., Aber, J., and Mellilo, J., Fine root, net primary production, and soil nitrogen availability: a new hypothesis, Ecology, 1985, vol. 66, pp. 1377–1390.CrossRefGoogle Scholar
  35. Nizovtsev, V.V. and Shein, E.V., Vremya i vozrast prirodnykh ob”ektov. Vremya fiziki i filosofii. Paleorekonstruktsii i vremya ontogeneza (Time and Age of Natural Objects. Time of Physics and Philosophy. Paleoreconstructions and Time of Ontogenesis), Moscow: URSS Editorial, 2017.Google Scholar
  36. Noguchi, K. and Koike, T., Dynamics and physiological processes of tree roots, Trees, 2016, vol. 30, pp. 327–341.Google Scholar
  37. Olesinski, J., Krasowski, M., Lavigne, M., and Kershaw, J., Fine root production varies with climate in balsam fir (Abies balsamea), Can. J. For. Res., 2012, vol. 42, pp. 364–374.CrossRefGoogle Scholar
  38. Orlov, A.Ya., Quantitative determination of uptaking roots of tree species in the soil, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1955, vol. 40, no. 3, pp. 15–20.Google Scholar
  39. Orlov, A.Ya., The role of dying uptaking tree roots in the biological cycle of the forest, Zh. Obshch. Biol., 1966, vol. 27, no. 1, pp. 40–47.Google Scholar
  40. Orlov, A.Ya. and Petrov-Spiridonov, A.A., Accumulation and fall of phytomass in sorrel-blueberry birch forest and on continuous logging site, Lesovedenie, 1986, no. 5, pp. 30–38.Google Scholar
  41. Park, B., Yanai, R., Fahey, T., Bailey, S., Siccama, T., Shaniey, J., and Cleavit, N., Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems, Ecosystems, 2008, vol. 11, pp. 325–341.CrossRefGoogle Scholar
  42. Persson, H., The distribution and productivity of fine roots in boreal forests, Plant Soil, 1983, vol. 71, pp. 87–101.CrossRefGoogle Scholar
  43. Pregitzer, K., King, J., Burton, A., and Brown, S., Responses of tree fine root to temperature, New Phytol., 2000, vol. 147, pp. 105–115.CrossRefGoogle Scholar
  44. Pregitzer, K., Zak, D., Talhelm, A., Burton, A., and Eikenberry, J., Nitrogen turnover in the Leaf litter and fine roots of sugar maple, Ecology, 2010, vol. 91, pp. 3456–3462.CrossRefGoogle Scholar
  45. Prokushkin, S.G., Mineral’noe pitanie sosny (Mineral Nutrition of Pine), Novosibirsk: Nauka, 1982.Google Scholar
  46. Prokushkin, S.G., Abaimov, A.P., and Prokushkin, A.S., Strukturno-funktsional’nye osobennosti listvennitsy Gmelina v kriolitozone Tsentral’noi Evenkii (Structural and functional Features of the Dahurian Larch in Cryolithozone of Central Evenkia), Krasnoyarsk: Inst. Lesa im. V.N. Sukacheva, Sib. Otd., Ross. Akad. Nauk, 2008.Google Scholar
  47. Razgulin, S.M., Destruction of soil organic matter and nitrogen assimilation in southern taiga ecosystems, Eurasian Soil Sci., 2004, vol. 37, no. 8, pp. 806–809.Google Scholar
  48. Razgulin, S.M., Mineralization of nitrogen in soils of boreal forests, Lesovedenie, 2008, no. 4, pp. 57–62.Google Scholar
  49. Razgulin, S.M., Mineralization of nitrogen compounds in soils of south-taiga ecosystems, Eurasian Soil Sci., 2010, vol. 43, no. 6, pp. 659–665.CrossRefGoogle Scholar
  50. Riley, W., Gaudinski, J., Torn, M., and Hanson, P., Fine root mortality rates in a temperate forest: estimates using radiocarbon data and numerical modeling, New Phytol., 2009, vol. 184, pp. 387–398.CrossRefGoogle Scholar
  51. Ruess, R., van Cleve, K., and Viereck, Y., Contributions of fine root production and turnover to the carbon and nitrogen cycling–taiga forests of the Alaskan interior, Can. J. For. Res., 1996, vol. 26, pp. 1326–1336.CrossRefGoogle Scholar
  52. Satomura, T., Fukusawa, K., and Horicoschi, T., Considerations in the study of tree fine root-turnover witch minirhizitrons, Plant Root, 2007, vol. 1, pp. 34–45.CrossRefGoogle Scholar
  53. Schenk, H. and Jackson, R., The global biogeography of roots, Ecol. Monogr., 2002, vol. 72, pp. 311–328.CrossRefGoogle Scholar
  54. Solli, E., Schoning, I., Muller, J., Socher, S., Trumbore, S., and Schrumpf, M., Mean age of carbon in fine roots from temperate forest and grasslands witch different management, Biogeosciences, 2013, vol. 11, pp. 4833–4843.CrossRefGoogle Scholar
  55. Steel, S., Gover, S., Vogel, J., and Norman, J., Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchenan and Manitoba, Canada, Trees Physiol., 1997, vol. 17, pp. 577–587.CrossRefGoogle Scholar
  56. Straus, J., Mrak, T., Ferlan, M., Zeleznik, P., and Kraight, H., Influence of soil temperature on growth traits of European beech seedling, Can. J. For. Res., 2015, vol. 45, pp. 246–251.CrossRefGoogle Scholar
  57. Titlyanova, A.A., Nutrient budget in ecosystems, Eurasian Soil Sci., 2007, vol. 40, no. 12, pp. 1270–1278.CrossRefGoogle Scholar
  58. Vogt, K., Vogt, D., and Bloomfild, J., Analysis of some direct and indirect methods for estimating root biomass and production of forest at ecosystems level, Proc. 5th Symp. International Society of Root Research “Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems,” Box, J., Ed., Dordrecht: Springer-Verlag, 1998, pp. 667–720.Google Scholar
  59. Yuan, Z.Y. and Chen, Y.H., Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta-analyses, Crit. Rev. Plant Sci., 2010, vol. 29, pp. 204–221.CrossRefGoogle Scholar
  60. Yuan, Z.Y. and Chen, Y.H., Simplifying the decision matrix for estimating fine root production by the sequential soil coring approach, Acta Oecol., 2013, vol. 48, pp. 54–61.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Forest ScienceRussian Academy of SciencesUspenskoe, Moscow oblastRussia
  2. 2.Demidov State UniversityYaroslavlRussia

Personalised recommendations