Contemporary Problems of Ecology

, Volume 11, Issue 7, pp 704–718 | Cite as

Effect of Reforestation on Microbiological Activity of Postagrogenic Soils in European Russia

  • I. N. KurganovaEmail author
  • V. O. Lopes de Gerenyu
  • A. S. Mostovaya
  • L. A. Ovsepyan
  • V. M. Telesnina
  • V. I. Lichko
  • Yu. I. Baeva


We have studied the microbiological activity of postagrogenic soddy–podzolic, gray, and dark gray forest soils representing succession stages of natural reforestation on former agricultural lands in various forest zones. The chosen succession chronoseries of postagrogenic soils are uniform and include arable soil, abandoned lands of various ages, and forest cenoses. The content of organic carbon (Corg) and total nitrogen (N), pH, water holding capacity (WHC), basal respiration (Vbasal), microbial biomass carbon (Cmic), and ecophysiological parameters of the status of microbial communities (metabolic coefficient qCO2; the Cmic: Corg ratio, and specific rate of basal respiration calculated as the Vbasal: Corg ratio) are determined in mixed soil samples taken from 0–10 and 10–20 cm layers. It has been revealed that the transformation of arable soils into abandoned lands constantly occupied by meadow or forest vegetation usually results in the progressive accumulation of organic carbon in the 0–10-cm layer. This causes more active soil respiration and a significant increase in the pool of microbial carbon. Parallel to this, the processes of podzol formation upon the development of forest vegetation result in a pronounced increase in acidity in the 10–20 cm layer, which causes a decrease in Vbasal and Cmic in soils of forest cenosis. For all the studied chronoseries of postagrogenic soils, the correlation between microbiological parameters (Vbasal and Cmic) and the general soil properties (Corg, N, and WHC) is the closest. The following factors (in decreasing order) exert effect on the dynamics of all the studied properties at postagrogenic evolution: forest zone/soil type > age of abandoned land ˜ depth in the arable layer.


postagrogenic soils organic matter basal respiration microbial biomass metabolic coefficient qCO2 reforestation southern taiga coniferous-broad-leaved forest zone forest steppe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alifanov, V.M., Paleokriogenez i sovremennoe pochvoobrazovanie (Paleocryogenesis and Modern Pedogenesis), Pushchino: Inst. Pochvoved. Fotosint., Pushch. Nauchn. Tsentr, Ross. Akad. Nauk, 1995.Google Scholar
  2. Anan’eva, N.D., Blagodatskaya, E.V., and Demkina, T.S., The effect of drying-moistening and freezing-thawing on soil microbial communities’ resilience, Eurasian Soil Sci., 1997, vol. 30, no. 9, pp. 1010–1014.Google Scholar
  3. Anan’eva, N.D., Blagodatskaya, E.V., and Demkina, T.S., Estimating the resistance of soil microbial complexes to natural and anthropogenic impacts, Eurasian Soil Sci., 2002, vol. 35, no. 5, pp. 514–521.Google Scholar
  4. Ananyeva, N.D., Stolnikova, E.V., Susyan, E.A., and Khodzhaeva, A.K., The fungal and bacterial biomass (selective inhibition) and the production of CO2 and N2O by soddy-podzolic soils of postagrogenic biogeocenoses, Eurasian Soil Sci., 2010, vol. 43, no. 11, pp. 1287–1293.CrossRefGoogle Scholar
  5. Anderson, J. and Domsch, K.H., A physiological method for the quantitative measurement of microbial biomass in soils, Soil Biol. Biochem., 1978, vol. 10, pp. 215–221.CrossRefGoogle Scholar
  6. Anderson, T.-H., Microbial eco-physiological indicators to assess soil quality, Agric., Ecosyst. Environ., 2003, vol. 98, pp. 285–293.CrossRefGoogle Scholar
  7. Anderson, T.-H., Physiological analysis of microbial communities in soil: applications and limitations, in Beyond the Biomass, Ritz, K., Dighton, J., and Ciller, K.E., Eds., London: Wiley, 1994, pp. 67–76.Google Scholar
  8. Anderson, T.-H. and Domsch, K.H., The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils, Soil Biol. Biochem., 1993, vol. 25, pp. 393–395.CrossRefGoogle Scholar
  9. Bazykina, G.S., Skvortsova, E.B., Tonkonogov, V.D., and Khokhlov, S.F., Water budget items and temperature regime of postagrogenic soddy-podzolic soils of Moscow region and their effect on the soil properties, Eurasian Soil Sci., 2007, vol. 40, no. 6, pp. 616–627.CrossRefGoogle Scholar
  10. Blagodatskaya, E.V., Anan’eva, N.D., and Myakshina, T.N., Characteristic of microbial community by metabolic coefficient, Pochvovedenie, 1995, no. 2, pp. 205–210.Google Scholar
  11. Charro, E., Gallardo, J.F., and Moyano, A., Degradability of soils under oak and pine in Central Spain, Eur. J. For. Res., 2010, vol. 129, pp. 83–91.CrossRefGoogle Scholar
  12. Ermolaev, A.M. and Shirshova, L.T., Influence of climate conditions and management of sown meadows on the herbage productivity and properties of grey forest soils, Eurasian Soil Sci., 2000, vol. 33, no. 12, pp. 1321–1328.Google Scholar
  13. Foster, D.R. and Motzkin, G., Interpreting and conserving the open land habitats of coastal New England: insights from landscape history, For. Ecol. Manage., 2003, vol. 185, pp. 127–150.CrossRefGoogle Scholar
  14. Gul’be, A.Ya., Dynamics of phytomass and annual production of birch forests on the deposits of subzone of southern taiga, in Produktsionnyi protsess i struktura lesnykh biogeotsenozov: teoriya i eksperiment. Pamyati A.I. Utkina (Production and Structure of Forest Biogeocenosises: Theory and Experiment. In Memoriam of A.I. Utkin), Romanovskii, M.G., Ed., Moscow: KMK, 2009, pp. 206–228.Google Scholar
  15. Insam, H., Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil Biol. Biochem., 1990, vol. 22, pp. 525–532.CrossRefGoogle Scholar
  16. IPCC Fourth Assessment Report: Climate Change, Pachauri, R.K. and Reisinger, A., Eds., Geneva, 2007.Google Scholar
  17. Kalinina, O., Chertov, O., Dolgikh, A.V., Lyuri, D.I., Vormstein, S., and Giani, L., Self-restoration of postagrogenic stagnic albeluvisols: Soil development, carbon stocks and dynamics of carbon pools, Geoderma, 2013, vols. 207–208, pp. 221–233.Google Scholar
  18. Kalinina, O., Goryachkin, S.V., Karavaeva, N.A., Lyuri, D.I., Najdenko, L., and Giani, L., Self-restoration of postagrogenic sandy soils in the southern taiga of Russia: Soil development, nutrient status, and carbon dynamics, Geoderma, 2009, vol. 152, pp. 35–42.CrossRefGoogle Scholar
  19. Kalinina, O., Goryachkin, S.V., Karavaeva, N.A., Lyuri, D.I., and Giani, L., Dynamics of carbon pools in post-agrogenic sandy soils of southern taiga of Russia, Carbon Balance Manage., 2010, vol. 5, p. 1. http://www.cbmjournal. com/content/5/1/1.CrossRefGoogle Scholar
  20. Kalinina, O., Krause, S.E., Goryachkin, S.V., Lyuri, D.I., and Giani, L., Self-restoration of post-agrogenic chernozems of Russia: soil development, carbon stocks, and dynamics of carbon pools, Geoderma, 2011, vol. 162, pp. 196–206.CrossRefGoogle Scholar
  21. Karelin, D.V., Lyuri, D.I., Goryachkin, S.V., Lunin, V.N., and Kudikov, A.V., Changes in the carbon dioxide emission from soils in the course of post-agrogenic succession in the chernozem forest-steppe, Eurasian Soil Sci., 2015, vol. 48, no. 11, pp. 1229–1241.CrossRefGoogle Scholar
  22. Kechaikina, I.O., Ryumin, A.G., and Chukov, S.N., Postagrogenic transformation of organic matter in soddypodzolic soils, Eurasian Soil Sci., 2011, vol. 44, no. 10, pp. 1077–1089.CrossRefGoogle Scholar
  23. Klassifikatsiya i diagnostika pochv SSSR (Classification and Diagnostics of Soils of USSR), Moscow: Kolos, 1977.Google Scholar
  24. Korobova, L.N., Specific succession of microbial communities in chernozems of Western Siberia, Extended Abstract of Doctoral (Biol.) Dissertation, Novosibirsk, 2007.Google Scholar
  25. Kurganova, I. and Kudeyarov, V., Ecosystems of Russia and global carbon budget, Sci. Russ., 2012, vol. 5, pp. 25–32.Google Scholar
  26. Kurganova, I.N. and Lopes de Gerenyu, V.O., Assessment of changes in soil organic carbon storage in soils of Russia, 1990–2020. Eurasian Soil Sci., 2008, vol. 41, no. 13, pp. 1371–1377.Google Scholar
  27. Kurganova, I.N. and Lopes de Gerenyu, V.O.,The stock of organic carbon in soils of the Russian Federation: updated estimation in connection with land use changes, Dokl. Biol. Sci., 2009, vol. 426, pp. 219–221.Google Scholar
  28. Kurganova, I.N., Ermolaev, A.M., Lopes de Gerenyu, V.O., Larionova, A.A., Sapronov, D.V., Keller, T., Lange, Sh., Roznova, L.N., Lichko, V.I., Myakshina, T.N., Kuzyakov, Ya.V., and Romanenkov, V.A., Flows and pool of carbon in fallow lands of Moscow region, in Pochvennye protsessy i prostransvenno-vremennaya organizatsiya pochv (Soil Processes and Spatio-Temporal Organization of Soils), Kudeyarov, V.N., Ed., Moscow: Nauka, 2006, pp. 271–284.Google Scholar
  29. Kurganova, I., Yermolaev, A., Lopes de Gerenyu, V., Larionova, A., Kuzyakov, Y., Keller, T., and Lange, S., Carbon balance in soils of abandoned lands in Moscow region, Eurasian Soil Sci., 2007, vol. 40, no. 1, pp. 50–58.Google Scholar
  30. Kurganova, I.N., Lopes de Gerenyu, V.O., Myakshina, T.N., Sapronov, D.V., Lichko, V.I., and Yermolaev, A.M., Changes in the carbon stocks of former croplands in Russia, Zemes Uko Mokslai, 2008, vol. 15, no. 4, pp. 10–15.Google Scholar
  31. Kurganova, I.N., Kudeyarov, V.N., and Lopes de Gerenyu, V.O., Updated estimate of carbon balance on Russian territory, Tellus B, 2010a, vol. 62, no. 5, pp. 497–505.Google Scholar
  32. Kurganova, I.N., Lopes de Gerenyu, V.O., Shvidenko, A.Z., and Sapozhnikov, P.M., Changes in the organic carbon pool of abandoned soils in Russia (1990–2004), Eurasian Soil Sci., 2010b, vol. 43, no. 3, pp. 333–340.Google Scholar
  33. Kurganova, I.N., Lopes de Gerenyu, V.O., Gallardo Lancho, J.F., and Oehm, C.T., Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, Mediterranean, and tropical monsoon climates, Eurasian Soil Sci., 2012, vol. 45, no. 1, pp. 68–79.Google Scholar
  34. Kurganova, I., Lopes de Gerenyu, V., Six, J., and Kuzyakov, Y., Carbon cost of collective farming collapse in Russia, Global Change Biol., 2014, vol. 20, pp. 938–947.Google Scholar
  35. Kurganova, I., Lopes de Gerenyu, V., and Kuzyakov, Y., Large-scale carbon sequestration in post-agrogenic ecosystems in Russia and Kazakhstan, Catena, 2015, vol. 133, pp. 461–466.Google Scholar
  36. Kuznetsova, I.V., Tikhonravova, P.I., and Bondarev, A.G., Changes in the properties of cultivated gray forest soils after their abandoning, Eurasian Soil Sci., 2009, vol. 42, no. 9, pp. 1062–1070.CrossRefGoogle Scholar
  37. Litvinovich, A.V., Pavlova, O.Yu., Drichko, V.F., Chernov, D.V., and Fomina, A.S., Change in acid-base properties of cultivated soddy-podzolic sandy soil depending on the fallow period, Agrokhimiya, 2005, no. 10, pp. 13–19.Google Scholar
  38. Litvinovich, A.V., Pavlova, O.Yu., Chernov, D.V., and Fomina, A.S., Transformation of the humus state of soddy-podzolic sandy soil during cultivation and subsequent exclusion from economic use, Agrokhimiya, 2004, no. 8, pp. 13–19.Google Scholar
  39. Lopes de Gerenyu, V., Kurganova, I., and Kuzyakov, Y., Carbon pools and sequestration in former arable chernozems depending on restoration period, Ekologjia, 2008, vol. 54, no. 4, pp. 38–44.Google Scholar
  40. Lopes de Gerenyu, V.O., Kurganova, I.N., Ermolaev, A.M., and Kuzyakov, Ya.V., Change of pool of organic carbon during self-recovery of arable chernozems, Agrokhimiya, 2009, no. 5, pp. 5–12.Google Scholar
  41. Lyuri, D.I., Goryachkin, S.V., Karavaeva, N.A., and Denisenko, E.A., Patterns of the lands abandoned from agricultural usein Russia and world and post-agrogenic use of fallow lands, Materialy Vserossiiskoi nauchnoi konferentsii “Agroekologicheskoe sostoyanie i perspektivy ispol’zovaniya zemel’ Rossii vybyvshikh iz aktivnogo sel’skokhozyistvennogo ispol’zovaniya” (Proc. All-Russ. Sci. Conf. “Agroecological Status and Prospects of Land Use in Russia Abandoned from Active Agricultural Use”), Ivanov, A.L., Ed., Moscow, 2008, pp. 30–44.Google Scholar
  42. Lyuri, D.I., Goryachkin, S.V., Karavaeva, N.A., Denisenko, E.A., and Nefedova, T.G., Dinamika sel’skokhozyaistvennykh zemel’ v Rossii v XX veke i postagrogennoe vosstanovlenie rastitel’nosti i pochv (Dynamics of Agricultural Lands in Russia in 20th Century and Post-Agrogenic Recovery of Vegetation and Soils), Moscow: GEOS, 2010.Google Scholar
  43. Lyuri, D.I., Karelin, D.V., Kudikov, A.V., and Goryachkin, S.V., Changes in soil respiration in the course of the post-agrogenic succession on sandy soils in the southern taiga zone, Eurasian Soil Sci., 2013, vol. 46, no. 9, pp. 935–947.CrossRefGoogle Scholar
  44. Martin A., Rapp, M., Santa Regina, I., and Gallardo, J.F., Leaf litter decomposition dynamics in some Mediterranean deciduous oaks, Eur. J. Soil Biol., 1994, vol. 30, pp. 119–124.Google Scholar
  45. Martin, A., Gallardo, J.F., and Santa Regina, I., Long-term decomposition process of leaf litter from Quercus pyrenaica forests across a rainfall gradient (Spanish Central System), Ann. For. Sci., 1997, vol. 54, pp. 191–202.CrossRefGoogle Scholar
  46. Moskalenko, S.V. and Bobrovskii, M.V., Resettlement of forest plant species from old oak forests to the abandoned arable lands in Kaluzhskie Zaseki Nature Park, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2012, vol. 14, no. 1 (5), pp. 1332–1335.Google Scholar
  47. Mostovaya, A.S., Kurganova, I.N., Lopes de Gerenyu, V.O., Khokhlova, O.S., Rusakov, A.V., and Shapovalov, A.S., Change of microbiological activity of gray forest soils during natural forestation, Vestn. Voronezh. Gos. Univ., Ser.: Khim., Biol., Farm., 2015, no. 2, pp. 64–72.Google Scholar
  48. Norris, C.E., Quideau, S.A., Bhattiw, J.S., and Wasylishenz, R.E., Soil carbon stabilization in jack pine stands along the Boreal Forest Transect Case Study, Global Change Biol., 2011, vol. 17, pp. 480–494.CrossRefGoogle Scholar
  49. Orlov, D.S., Khimiya pochv (Soil Chemistry), Moscow: Mosk. Gos. Univ., 1985.Google Scholar
  50. Orlov, D.S., Biryukova, O.N., and Sukhanova, N.I., Organicheskoe veshchestvo pochv Rossii (Soil Organic Matter in Russia), Moscow: Nauka, 1996.Google Scholar
  51. Pérez-Cruzado, C., Mansilla-Salinero, P., Rodriguez-Soalleiro, R., and Merino, A., Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region, Plant Soil, 2011, vol. 353, nos. 1–2, pp. 333–353.Google Scholar
  52. Pochvy prirodnykh zon Russkoi ravniny: uchebnoe posobie po obshchemu kursu “Pochvovedenie” (Soils of Natural Zones of the Russian Plain: Manual for Educational Course on Soil Science), Aparin, B.F., Ed., St. Petersburg: S.-Peterb. Gos. Univ., 2007.Google Scholar
  53. Poeplau, C., Don, A., Vesterdal, L., Leifeld, J., van Wesemael, B., Schumacher, J., and Gensior, A., Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach, Global Change Biol., 2011, vol. 17, pp. 2415–2427.Google Scholar
  54. Rabbinge, R. and van Diepen, C.A., Changes in agriculture and land use in Europe, Eur. J. Agron., 2000, vol. 13, pp. 85–100.CrossRefGoogle Scholar
  55. Rovira, P., Jorba, M., and Romanya, J., Active and passive organic matter fractions in Mediterranean forest soils, Biol. Fertil. Soils, 2010, vol. 46, pp. 355–369.CrossRefGoogle Scholar
  56. Semenov, V.M. and Kogut, B.M., Pochvennoe organicheskoe veshchestvo (Soil Organic Matter), Moscow: GEOS, 2015. Specialized arrays for climate research. http://aisori.meteo. ru/ClimateR.Google Scholar
  57. Stanturf, J.A. and Madsen, I., Restoration concepts for temperate and boreal forests of North America and Western Europe, Plant Biosyst., 2002, vol. 2, pp. 143–158.CrossRefGoogle Scholar
  58. Susyan, E.A., Wirth, S., Ananyeva, N.D., and Stolnikova, E.V., Forest succession on abandoned arable soils in European Russia—impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity, Eur. J. Soil Biol., 2011, vol. 47, pp. 169–174.CrossRefGoogle Scholar
  59. Telesnina, V.M., Post-agrogenic dynamics of vegetation and soil properties during demutational succession in southern taiga, Lesovedenie, 2015, no. 4, pp. 192–205.Google Scholar
  60. Telesnina, V.M., Vaganov, I.E., Karlsen, A.A., Ivanova, A.E., Zhukov, M.A., and Lebedev, S.M., Specific features of the morphology and chemical properties of coarse-textured postagrogenic soils of the southern taiga, Kostroma oblast, Eurasian Soil Sci., 2016, vol. 49, no. 1, pp. 102–115.CrossRefGoogle Scholar
  61. Thuille, A. and Schulze, E.-D.E.F., Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps, Global Change Biol., 2006, vol. 12, pp. 325–342.CrossRefGoogle Scholar
  62. van der Wal, A., van Veen, J.A., Smant, W., Boschker, T.S., Bloem, J., Kardol, P., van der Putten, W.H., and de Boer, W., Fungal biomass development in a chronosequence of land abandonment, Soil Biol. Biochem., 2006, vol. 38, pp. 51–60.Google Scholar
  63. Vadyunina, A.F. and Korchagina, Z.A., Metody issledovaniya fizicheskikh svoistv pochv (Manual for Analysis of Physical Properties of Soils), Moscow: Agropromizdat, 1986.Google Scholar
  64. Vladychenskii, A.S., Telesnina, V.M., and Ivan’ko, M.V., Humus status of forest soils in European part and Siberia after agricultural use, Vestn. Mosk. Univ., Ser. 17: Pochvoved., 2006, no. 3, pp. 3–10.Google Scholar
  65. Vladychenskii, A.S. and Telesnina, V.M., A comparative characterization of postagrogenic soils under different lithological conditions in the southern taiga, Moscow Univ. Soil Sci. Bull., 2007, vol. 62, no. 4, pp. 167–174.CrossRefGoogle Scholar
  66. Vladychensky, A.S., Telesnina, V.M., and Chalaya, T.A., Influence of fallen plant leaves on biological activity of post-agrogenic soils of southern taiga, Moscow Univ. Soil Sci. Bull., 2012, vol. 67, no. 1, pp. 1–7.CrossRefGoogle Scholar
  67. Vladychenskii, A.S., Telesnina, V.M., Rumyantseva, K.A., and Chalaya, T.A., Organic matter and biological activity of postagrogenic soils in the southern taiga using the example of Kostroma oblast, Eurasian Soil Sci., 2013, vol. 46, no. 5, pp. 518–529.CrossRefGoogle Scholar
  68. von Lützow, M., Kogel-Knabner, Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., and Marschner, B., SOM fractionation methods: relevance to functional pools and to stabilization mechanisms, Soil Biol. Biochem., 2007, vol. 39, pp. 2183–2207.Google Scholar
  69. Yermolayev, A.M. and Shirshova, L.T., Dynamics of plant organic matter and certain humus fractions in Gray Forest soil under artificial grassland, Sov. J. Ecol., 1988, vol. 19, no. 1, pp. 10–16.Google Scholar
  70. Zamotaev, I.V., Belobrov, V.P., Kurbatova, A.N., and Belobrova, D.V., Agrogenic and post-agrogenic soil transformation in L’govskii district of Kursk oblast, Byull. Pochv. Inst. im. V.V. Dokuchaeva, 2016, no. 85, pp. 97–113.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. N. Kurganova
    • 1
    • 2
    Email author
  • V. O. Lopes de Gerenyu
    • 1
  • A. S. Mostovaya
    • 3
  • L. A. Ovsepyan
    • 1
  • V. M. Telesnina
    • 4
  • V. I. Lichko
    • 1
  • Yu. I. Baeva
    • 5
  1. 1.Institute of Physicochemical and Biological Problems of Soil SciencesRussian Academy of SciencesPushchino, Moscow oblastRussia
  2. 2.Institute of Forest, Karelian Research CentreRussian Academy of SciencesPetrozavodskRussia
  3. 3.Russian State Agrarian University, Moscow Timiryazev Agricultural AcademyMoscowRussia
  4. 4.Faculty of Soil ScienceMoscow State UniversityMoscowRussia
  5. 5.Agrarian Technical InstitutePeoples Friendship University of RussiaMoscowRussia

Personalised recommendations