Advertisement

Contemporary Problems of Ecology

, Volume 11, Issue 7, pp 729–742 | Cite as

Comparing Eco-Phytocoenotic and Eco-Floristic Methods of Classification to Estimate Coenotic Diversity and to Map Forest Vegetation

  • N. G. BelyaevaEmail author
  • T. V. Chernen’kova
  • O. V. Morozova
  • R. B. Sandlerskii
  • M. V. Arkhipova
Article
  • 1 Downloads

Abstract

The coenotic diversity of forests of the model region in southwestern Moscow oblast with an area of 51 500 ha has been assessed using data from field studies, remote sensing (Landsat-5 TM, Landsat-8 OLI, and TIRS), and digital terrain models of the landscape. Forest communities are classified using two different methods: eco-phytocoenotic and eco-floristic. We recognize 15 eco-phytocoenotic syntaxa at the level of group associations and 9 eco-floristic syntaxa. The high accuracy of grouping of releves is supported statistically for each classification approach. The quality of classification is evaluated by stepwise discriminant analysis based on the representation and abundance of species. It is higher for eco-floristic syntaxa (87.1%) than for eco-phytocoenotic ones (78.9%). The adjustment of composition and names of syntaxa of eco-phytocoenotic classification ensure the compliance of typological and mapping units. The prediction quality of syntaxa recognized from pixel brightness and topographic variables is 78.6%. The quality of discriminant analysis of recognized syntaxa of the eco-phytocoenotic model show a lower accuracy of mapping model (69.7%). Large-scale maps of forest vegetation for the model region based on both classifications have been developed. It is shown that representations of eco-phytocoenotic units have a higher accuracy, as these units correspond to recent state of plant communities at their actual succession stage. On the other hand, eco-floristic units provide insight into the potential vegetation composition of a habitat. The large number of syntaxa of eco-floristic classification (associations and subassociations) made it possible to trace general patterns of vegetation on largescale maps. This feature could be more informative in medium- and small-scale mapping.

Keywords

mixed forests remote sensing eco-phytocoenotic and eco-floristic classifications discriminant analysis mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annenskaya, G.N., Zhuchkova, V.K., Kalinina, V.R., Mamai, I.I., Nizovtsev, V.A., Khrustaleva, M.A., and Tsese’chuk, Yu.N., Landshafty Moskovskoi oblasti i ikh sovremennoe sostoyanie (Modern State of Landscapes in Moscow Oblast), Smolensk: Smolensk. Gumanit. Univ., 1997.Google Scholar
  2. Braun-Blanquet, J., Pflanzensoziologie, Grundzüge der Vegetationskunde, Berlin: Springer-Verlag, 1964, 3rd ed.Google Scholar
  3. Chernen’kova, T.V. and Morozova, O.V., Classification and mapping of coenotic diversity of forests, Contemp. Probl. Ecol., 2017, vol. 10, no. 7, pp. 738–747.Google Scholar
  4. Chernen’kova, T.V., Levitskaya, N.N., Kozlov, D.N., Tikhonova, E.V., Ogureeva, G.N., and Pesterova, O.A., Assessment of status and dynamics of forest biological diversity in Moscow oblast using the land and remote analysis methods, in Raznoobrazie i monitoring lesnykh ekosistem Rossii (Diversity and Monitoring of Forest Ecosystems of Russia), Isaev, A.S., Ed., Moscow: KMK, 2012, vol. 1, pp. 316–370.Google Scholar
  5. Chernenkova, T.V., Puzachenko, M.Yu., Morozova, O.V., Ogureeva, G.N., and Kuperman, R.G., An approach for mapping Northern Fennoscandian forests at different scales, Bot. Pac., 2015, vol. 4, no. 1, pp. 37–46.Google Scholar
  6. Chernen’kova, T.V., Morozova, O.V., Puzachenko, M.Yu., Popov, S.Yu., and Belyaeva, N.G., Composition and structure of spruce forests of the southwestern part of Moscow region, Contemp. Probl. Ecol., 2016, vol. 9, no. 7, pp. 820–833. Forest resources of European Russia. http://cepl.rssi.ru/bio/flora/main.htm. Accessed December 12, 2017.CrossRefGoogle Scholar
  7. Hennekens, S.M., TURBO(VEG). Software Package for Input, Processing and Presentation of Phytosociological Data. User’s Guide, Lancaster: Univ. of Lancaster, 1996.Google Scholar
  8. Hill, M.O., TWINSPAN: A FORTRAN Program for Arranging Multivariate Data in Ordered Two-Way Table Classification of the Individuals and Attributes, Ithaca: Cornell Univ., 1979.Google Scholar
  9. Il’inskaya, S.A., Matveeva, A.A., Rechan, S.P., Kazantseva, T.N., and Orlova, M.A., Forest types, in Lesa Zapadnogo Podmoskov’ya (Forests of Western Part of Moscow Region), Moscow: Nauka, 1982, pp. 20–149.Google Scholar
  10. Klecka, W.R., Discriminant Analysis, Quantitative Approach in the Social Science Series vol. 19, Beverly Hills: Sage Univ. Press, 1980.Google Scholar
  11. Komarova, A.F., Diversity of dark coniferous forests of Northwestern Caucasus and their spatial distribution, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow: Moscow State Univ., 2017.Google Scholar
  12. Kozlov, D.N., Landscape cover inventory using spatial analysis for landscape planning purposes, Trudy mezhdunarodnoi shkoly-konferentsii “Landshaftnoe planirovanie: obshchie osnovaniya, metodologiya, tekhnologiya” (Proc. Int. School-Conf. “Landscape Planning: General Statements, Methods, and Technology”), Moscow: Mosk. Gos. Univ., 2006.Google Scholar
  13. Kozlov, D.N., Puzachenko, M.Yu., Fedyaeva, M.V., and Puzachenko, Yu.G., Representation of spatial variation of properties of landscape cover based on remote information and digital model of relief, Izv. Ross. Akad. Nauk, Ser. Geogr., 2008, no. 4, pp. 112–124.Google Scholar
  14. Krenke, A.N., Formation factors of the landscape components based on thematic maps, remote survey, and 3D relief model, Extended Abstract of Cand. Sci. (Geogr.) Dissertation, Moscow: Inst. Geogr., Russ. Acad. Sci., 2011.Google Scholar
  15. Malysheva, N.V., Avtomaticheskoe deshifrovanie aerokosmicheskikh izobrazhenii lesnykh nasazhdenii (Automatic Decryption of Aerospace Images of Forest Plantations), Moscow: Mosk. Gos. Univ. Lesa, 2012.Google Scholar
  16. Morozova, O.V. and Tikhonova, E.V., Differentiation of forest communities of wouthwestern part of Moscow oblast, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk, 2012, vol. 14, no. 1 (4), pp. 1073–1077.Google Scholar
  17. Neshataeva, V.Yu. and Dem’yanov, V.A., Forest vegetation of Polar Urals in Upper Ob River, Bot. Zh., 2002, vol. 87, no. 5, pp. 90–109.Google Scholar
  18. Popov, S.Yu., Experience of creating a geobotanical map using discriminant analysis of field vegetation description and remote sensing data, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm., 2016, vol. 13, no. 1, pp. 25–35.CrossRefGoogle Scholar
  19. Porfir’ev, V.S., Use of series and a cycle definitions for study of coniferous-broadleaved forests, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1960, no. 3, pp. 93–99.Google Scholar
  20. Puzachenko, Yu.G., Matematicheskie metody v ekologicheskikh i geograficheskikh issledovaniyakh (Mathematical Methods Used in Ecological and Geographic Studies), Moscow: Akademiya, 2004.Google Scholar
  21. Puzachenko, M.Yu. and Chernen’kova, T.V., Definition of factors of spatial variation in vegetation using RSD, DEM and field data by example of the central part of Murmansk oblast, Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm., 2016, vol. 13, no. 5, pp. 167–191.Google Scholar
  22. Puzachenko, M.Yu., Puzachenko, Yu.G., Kozlov, D.N., and Fedyaeva, M.V., Mapping of the capacity of the organogenic and humus horizons of forest soils and swamps of the south-taiga landscape (southwest of the Valdai Upland) based on a 3D model of relief and Landsat 7 remote data, Issled. Zemli Kosm., 2006, no. 4, pp. 1–9.Google Scholar
  23. Puzachenko, Yu.G., Sandlersky, R.B., Krenke, A.N., and Puzachenko, M.Yu. Multispectral remote information in forest research, Contemp. Probl. Ecol., 2014, vol. 7, no. 7, pp. 838–854.Google Scholar
  24. Savel’eva, L.I., Types of coniferous forests of Moscow region, in Dinamika khvoinykh lesov Podmoskov’ya (Dynamics of Coniferous Forests of Moscow Region), Moscow: Nauka, 2000.Google Scholar
  25. Sokolov, S.Ya., Taxonomy of forest associations, Probl. Bot., 1962, vol. 6, pp. 36–42.Google Scholar
  26. Tichý, L., JUICE, software for vegetation classification, J. Veg. Sci., 2002, vol. 13, pp. 451–453.CrossRefGoogle Scholar
  27. Tyurin, V.V. and Shcheglov, S.N., Diskriminantnyi ananliz v biologii (Discriminant Analysis in Biology), Krasnodar: Kuban. Gos. Univ., 2015.Google Scholar
  28. Westhoff, V. and van der Maarel, E., The Braun-Blanquet approach, in Ordination and Classification of Communities, Whittaker, R.H., Ed., Dordrecht: W. Junk, 1973, vol. 5, pp. 617–726.Google Scholar
  29. Zaugol’nova, L.B. and Morozov, O.V., Typology and classification of forests of European Russia: methods and their possible implementation, Lesovedenie, 2006, no. 1, pp. 34–48.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. G. Belyaeva
    • 1
    Email author
  • T. V. Chernen’kova
    • 1
  • O. V. Morozova
    • 1
    • 2
  • R. B. Sandlerskii
    • 3
  • M. V. Arkhipova
    • 4
  1. 1.Center for Forest Ecology and ProductivityRussian Academy of SciencesMoscowRussia
  2. 2.Institute of GeographyRussian Academy of SciencesMoscowRussia
  3. 3.Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia
  4. 4.Sergeev Institute of Environmental GeoscienceRussian Academy of ScienceMoscowRussia

Personalised recommendations