Advertisement

Numerical Analysis and Applications

, Volume 11, Issue 4, pp 279–292 | Cite as

Monte Carlo Estimation of Functional Characteristics of Field Intensity of Radiation Passing through a Random Medium

  • A. Yu. AmbosEmail author
  • G. A. Mikhailov
Article
  • 11 Downloads

Abstract

Numerical-statistical estimates of correlation characteristics and averaged angular distributions of field intensity of radiation passing through a randommedium are obtained. Comparative investigations are performed for an elementary Poisson field and for a “realistic” field of optical density of the medium. The estimates obtained confirm the hypothesis that the quantities being investigated are strongly dependent on the correlation scale and the one-dimensional distribution of the density field.

Keywords

Monte Carlo method Poisson ensemble random medium correlation function correlation radius radiative transfer transmission function transmission probability delta scattering double randomization method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambos, A.Y. and Mikhailov, G.A., Effective Averaging of Stochastic RadiativeModels Based onMonte Carlo Simulation, Comput. Math. Math. Phys., 2016, vol. 56, no. 5, pp. 881–893.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Mikhailov, G.A., EfficientMonte Carlo Algorithms for Evaluating the Correlation Characteristics of Conditional Mathematical Expectations, USSR Comput. Math.Math. Phys., 1977, vol. 17, no. 1, pp. 244–247.CrossRefGoogle Scholar
  3. 3.
    Mikhailov, G.A. and Voitishek, A.V., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo (Numerical StatisticalModeling:Monte CarloMethods),Moscow: Akademiya, 2006.Google Scholar
  4. 4.
    Woodcock, E., Murphy, T., Hemmings, P., and Longworth, S., Techniques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors and Other Systems of Complex Geometry, Proc. Conf. Applications of Computing Methods to Reactor Problems, 1965, p. 557.Google Scholar
  5. 5.
    Ambos, A.Yu. and Mikhailov, G.A., Solution of Radiative Transfer Theory Problems for “Realistic” Models of Random Media Using the Monte Carlo Method, Russ. J. Num. An. Math. Model., 2016, vol. 31, no. 3, pp. 127–136.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ambos, A.Yu., Numerical Models of Mosaic Homogeneous Isotropic Random Fields and Problems of Radiative Transfer, Num. An. Appl., 2016, vol. 9, no. 1, pp. 12–23.CrossRefzbMATHGoogle Scholar
  7. 7.
    Marchuk, G.I., Mikhailov, G.A., Nazaraliev, M.A., Darbinjan, R.A., Kargin, B.A., and Elepov, B.S., The Monte Carlo Methods in Atmospheric Optics, Marchuk, G.I., Ed., Berlin: Springer, 1980.CrossRefGoogle Scholar
  8. 8.
    Feigelson, E.M. and Krasnokutskaya, L.D., Potoki solnechnogo izlucheniya i oblaka (Fluxes of Solar Radiation and Clouds), Leningrad: Gidrometeoizdat, 1978.Google Scholar
  9. 9.
    Ibragimov, I.A. and Linnik, Yu.V., Nezavisimye i statsionarno svyazannye velichiny (Independent and Stationary Sequences of Random Variables),Moscow: Nauka, 1965.zbMATHGoogle Scholar
  10. 10.
    Mikhailov, G.A., Optimizatsiya vesovykh metodov Monte-Karlo (Optimization ofWeighted Monte Carlo Methods), Berlin: Springer, 1992.Google Scholar
  11. 11.
    Borovkov, A.A., Matematicheskaya statistika (Mathematical Statistics), New York: Gordon and Breach, 1998.zbMATHGoogle Scholar
  12. 12.
    Lotova, G.Z., Monte Carlo Algorithms for Calculation of Diffusive Characteristics of an Electron Avalanche in Gases, Russ. J. Num. An. Math. Model., 2011, vol. 31, no. 6, pp. 369–377.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Switzer, P., A Random Set Process in the Plane with aMarkovian Property, Ann.Math. Stat., 1965, vol. 36, pp. 1859–1863.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Prigarin, S.M., Metody chislennogo modelirovaniya sluchainykh protsessov i polei (Methods of NumericalModeling of Random Processes and Fields), Novosibirsk: Publ. House of ICM&MG SB RAS, 2005.Google Scholar
  15. 15.
    Ambos, A.Yu. and Mikhailov, G.A., Statistical Modeling of the Exponentially Correlated Multivariate Random Field, Russ. J. Num. An. Math. Model., 2011, vol. 26, no. 3. pp. 213–232.Google Scholar
  16. 16.
    Serra, J., Image Analysis and Mathematical Morphology, London: Academic Press, 1982.zbMATHGoogle Scholar
  17. 17.
    Mikhailov, G.A. and Troinikov, V.S., Modeling of Random Fields in Solving Stochastic Problems by Monte Carlo Method (Properties of Realizations), in Aktual’nye problemy vychislitel’noi i prikladnoi matematiki, Novosibirsk: Nauka, 1983, pp. 122–127.zbMATHGoogle Scholar
  18. 18.
    Mikhailov, G.A. and Ambos, A.Yu., New Computational Model of an Isotropic “Broken” Exponentially Correlated Random Field, Dokl. AN, Math., 2016, vol. 94, no. 1, pp. 411–414.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kullback, S., Information Theory and Statistics, New York:Wiley, 1959.zbMATHGoogle Scholar
  20. 20.
    Zuev, V.E. and Titov, G.A., Optika atmosfery i klimat (Atmospheric Optics and Climate), vol. 9, Tomsk: Spektr, 1996.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations