Advertisement

Numerical Analysis and Applications

, Volume 11, Issue 3, pp 268–277 | Cite as

Mixed Methods for Optimal Control Problems

Article
  • 21 Downloads

Abstract

In this paper, we investigate a posteriori error estimates of amixed finite elementmethod for elliptic optimal control problems with an integral constraint. The gradient for ourmethod belongs to the square integrable space instead of the classical H(div; Ω) space. The state and co-state are approximated by the P 0 2 -P1 (velocity–pressure) pair and the control variable is approximated by piecewise constant functions. Using duality argument method and energy method, we derive the residual a posteriori error estimates for all variables.

Keywords

elliptic equations optimal control problems a posteriori error estimates mixed finite element methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonnans, J.F. and Casas, E., An Extension of Pontryagin’s Principle for State-Constrained Optimal Control of Semilinear Elliptic Equations and Variational Inequalities, SIAM J. Contr. Optim., 1995, vol. 33, pp. 274–298.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Brunner, H. and Yan, N., Finite Element Methods for Optimal Control Problems Governed by Integral Equations and Integro-Differential Equations, Num. Math., 2005, vol. 101, pp. 1–27.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Ciarlet, P.G., The Finite Element Method for Elliptic Problems, Amsterdam: North-Holland, 1978.zbMATHGoogle Scholar
  4. 4.
    Chen, Y., Superconvergence of Mixed Finite Element Methods forOptimal Control Problems, Math. Comp., 2008, vol. 77, pp. 1269–1291.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chen, Y., Superconvergence of Quadratic Optimal Control Problems by Triangular Mixed Finite Element Methods, Int. J. Num. Meth. Eng., 2008, vol. 75, no. 8, pp. 881–898.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, Y. and Dai, Y., Superconvergence for Optimal Control Problems Governed by Semi-Linear Elliptic Equations, J. Sci. Comput., 2009, vol. 39, pp. 206–221.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chen, Y., Huang, Y., Liu, W.B., and Yan, N., Error Estimates and Superconvergence ofMixed Finite Element Methods for Convex Optimal Control Problems, J. Sci. Comput., 2010, vol. 42, no. 3, pp. 382–403.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, S.C. and Chen, H.R., New Mixed Element Schemes for a Second-Order Elliptic Problem, Math. Num. Sinica, 2010, vol. 32, no. 2, pp. 213–218.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gunzburger, M.D. and Hou, L.S., Finite-Dimensional Approximation of a Class of Constrained Nonlinear Optimal Control Problems, SIAM J. Contr. Optim., 1996, vol. 34, pp. 1001–1043.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ge, L., Liu, W.B., and Yang, D.P., Adaptive Finite Element Approximation for a ConstrainedOptimal Control Problem via Multi-Meshes, J. Sci. Comput., 2009, vol. 41, no. 2, pp. 238–255.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Guo, H., Fu, H., and Zhang, J., A Splitting Positive Definite Mixed Finite Element Method for Elliptic Optimal Control Problem, Appl.Math. Comp., 2013, vol. 219, pp. 11178–11190.MathSciNetzbMATHGoogle Scholar
  12. 12.
    Grisvard, P., Elliptic Problems in Nonsmooth Domains, London: Pitman, 1985.zbMATHGoogle Scholar
  13. 13.
    Gong, W. and Yan, N., Adaptive Finite Element Method for Elliptic Optimal Control Problems: Convergence and Optimality, Num. Math., 2017, vol. 135, no. 4, pp. 1121–1170.MathSciNetzbMATHGoogle Scholar
  14. 14.
    Hou, T. and Chen, Y., Mixed Discontinuous Galerkin Time-Stepping Method for Linear Parabolic Optimal Control Problems, J. Comput. Math., 2015, vol. 33, no. 2, pp. 158–178.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hou, L. and Turner, J.C., Analysis and Finite Element Approximation of an Optimal Control Problem in Electrochemistry with Current Density Controls, Num. Math., 1995, vol. 71, pp. 289–315.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Knowles, G., Finite Element Approximation of Parabolic Time Optimal Control Problems, SIAM J. Contr. Optim., 1982, vol. 20, pp. 414–427.MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kufner, A., John, O., and Fucik, S., Function Spaces, Leiden: Nordhoff, 1977.zbMATHGoogle Scholar
  18. 18.
    Lions, J.L., Optimal Control of Systems Governed by Partial Differential Equations, Berlin: Springer-Verlag, 1971.zbMATHGoogle Scholar
  19. 19.
    Li, R., Liu, W.B., Ma, H., and Tang, T., Adaptive Finite Element Approximation of Elliptic Optimal Control Problems, SIAM J. Contr. Optim., 2002, vol. 41, pp. 1321–1349.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Li, R., Liu, W.B., and Yan, N., A Posteriori Error Estimates of Recovery Type for Distributed Convex Optimal Control Problems, J. Sci. Comput., 2002, vol. 41, no. 5, pp. 1321–1349.Google Scholar
  21. 21.
    Liu, W., Ma, H., Tang, T., and Yan, N., A Posteriori Error Estimates for Discontinuous Galerkin Time-Stepping Method forOptimal Control ProblemsGoverned by Parabolic Equations, SIAM J. Num. An., 2004, vol. 42, pp. 1032–1061.zbMATHGoogle Scholar
  22. 22.
    Liu, W. and Yan, N., A Posteriori Error Estimates for Convex Boundary Control Problems, SIAM J. Num. An., 2001, vol. 39, pp. 73–99.MathSciNetzbMATHGoogle Scholar
  23. 23.
    Liu, W. and Yan, N., A Posteriori Error Estimates for Control Problems Governed by Stokes Equations, SIAM J. Num. An., 2003, vol. 40, pp. 1850–1869.MathSciNetzbMATHGoogle Scholar
  24. 24.
    Liu, W. and Yan, N., A Posteriori Error Estimates for Optimal Control Problems Governed by Parabolic Equations, Num. Math., 2003, vol. 93, pp. 497–521.MathSciNetzbMATHGoogle Scholar
  25. 25.
    Meyer, C. and Rösch, A., Superconvergence Properties of Optimal Control Problems, SIAM J. Contr. Optim., 2004, vol. 43, no. 3, pp. 970–985.MathSciNetzbMATHGoogle Scholar
  26. 26.
    Meyer, C. and Rösch, A., L -Estimates for Approximated Optimal Control Problems, SIAM J. Contr. Optim., 2005, vol. 44, no. 5, pp. 1636–1649.MathSciNetzbMATHGoogle Scholar
  27. 27.
    Meidner, D. and Vexler, B., A Priori Error Estimates for Space-Time Finite Element Discretization of ParabolicOptimal Control Problems. Part I: Problemswithout Control Constraints, SIAM J. Contr. Optim., 2008, vol. 47, no. 3, pp. 1150–1177.zbMATHGoogle Scholar
  28. 28.
    Meidner, D. and Vexler, B., A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems. Part II: Problems with Control Constraints, SIAM J. Contr. Optim., 2008, vol. 47, no. 3, pp. 1301–1329.zbMATHGoogle Scholar
  29. 29.
    McKnight, R.S. and Bosarge, W.E., The Ritz–Galerkin Procedure for Parabolic Control Problems, SIAM J. Contr. Optim., 1973, vol. 11, no. 3, pp. 510–542.MathSciNetzbMATHGoogle Scholar
  30. 30.
    Scott, L.R. and Zhang, S., Finite Element Interpolation of Nonsmooth Functions Satisfying Boundary Conditions, Math. Comp., 1990, vol. 54, pp. 483–493.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Shi, F., Yu, J.P., and Li, K.T., A New Stabilized Mixed Finite-ElementMethod for PoissonEquation Based on Two Local Gauss Integrations for Linear Element Pair, Int. J. Comput.Math., 2011, vol. 88, pp. 2293–2305.MathSciNetzbMATHGoogle Scholar
  32. 32.
    Shen, W., Ge, L., Yang, D., and Liu, W., Sharp a Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations, J. Sci. Comput., 2015, vol. 65, no. 1, pp. 1–33.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Xiong, C. and Li, Y., A Posteriori Error Estimates forOptimal Distributed ControlGoverned by the Evolution Equations, Appl. Num. Math., 2011, vol. 61, no. 2, pp. 181–200.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsBeihua UniversityJilinChina

Personalised recommendations