Advertisement

Polymer Science, Series D

, Volume 12, Issue 1, pp 58–63 | Cite as

The Morphology of Fibrous Matrices for Medical Use from Poly-3-Oxybutyrate Obtained by Electrospinning

  • A. A. Ol’khovEmail author
  • V. N. Gorshenev
  • O. V. Staroverova
  • L. V. Bondarenko
  • V. I. Perov
  • A. L. Iordanskii
Article
  • 11 Downloads

Abstract

The application of nonwoven fibrous matrices made of biodegradable polymers for medicine and tissue engineering is a promising direction in bioengineering. The matrices based on poly-3-oxybutyrate biopolymer with the use of titanium dioxide and silicon nanoparticles have been produced via electrospinning. It is found that nanoscale particles accelerate crystallization and melting of polymer and improve the physicomechanical parameters of the fibrous materials. It has been shown that the most favorable foundation for growth of the living cells is matrices made of filaments of small diameter. Nonwoven fibrous matrices of poly-3-oxybutyrate can be proposed for tissue engineering and traumatology.

Keywords:

fibrous matrices nanoscale particles poly-3-hydroxybutyrate electrospinning 

Notes

ACKNOWLEDGMENTS

This work was partially supported by the Plekhanov Russian University of Economics (A.A. Ol’khov) and Russian Foundation for Basic Research (project no. 15-29-04862-ofi_m) (V.N. Gorshenev) and within the frameworks of a state order for the Institute of Chemical Physics, Russian Academy of Sciences (0082-2014—0009, state registration no. AAAA-A17-117040610309-0) (A.L. Iordanskii), and a state order for the Institute of Chemical Physics, Russian Academy of Sciences (0082-2018-0006, state registration no. AAAA-A18-118020890097-1 (O.V. Staroverova).

The measurements were carried out with the use of the New Materials and Technologies Center of Collective Use of the Institute of Biochemical Physics, Russian Academy of Sciences .

REFERENCES

  1. 1.
    G. Meier Burgisser and J. Buschmann, “History and performance of implant materials applied as peritendinous antiadhesives,” J. Biomed. Mater. Res. B Appl. Biomater. 103 (1), 212–228 (2015).Google Scholar
  2. 2.
    P. D. Fabricant, K. J. Jones, D. Delos, F. A. Cordasco, R. G. Marx, A. D. Pearle, R. F. Warren, and D. W. Green, “Reconstruction of the anterior cruciate ligament in the skeletally immature athlete: A review of current concepts,” J. Bone Joint Surg. Am. 95-A (5), 1–13 (2013). http://dx.doi.org/ https://doi.org/10.2106/JBJS.L.00772
  3. 3.
    K. Markatos, G. Tsoucalas, and M. Sgantzos, “Hallmarks in the history of orthopaedic implants for trauma and joint replacement,” Acta Med. Hist. Adriat. 14 (1), 161–176 (2016).Google Scholar
  4. 4.
    A. A. Ol’khov, O. V. Staroverova, M. A. Gol’dshtrakh, A. V. Khvatov, K. Z. Gumargalieva, and A. L. Iordanskii, “Electrospinning of biodegradable poly-3-hydroxybutyrate. Effect of the characteristics of the polymer solution,” Russ. J. Phys. Chem. B 10 (5), 830–838 (2016).Google Scholar
  5. 5.
    C. Kriegel, A. Arecchi, K. Kit, D. J. McClements, and J. Weiss, “Fabrication, functionalization, and application of electrospun biopolymer nanofibers,” Crit. Rev. Food Sci. Nutr. 48 (8), 775–797 (2008).Google Scholar
  6. 6.
    I. Vasilyeva, G. Kuz’micheva, A. Gainanova, O. Timaeva, A. Dorokhov, A. Pochtar, and V. Podbel’skiy, “On the nature of the phase η-TiO2,” New J. Chem. 40 (1), 151–161 (2016).Google Scholar
  7. 7.
    A. O. Rybaltovskiy, Y. S. Zavorotny, A. A. Ischenko, M. A. Lazov, A. V. Garshev, S. G. Dorofeev, N. N. Kononov, N. V. Minaev, S. A. Minaeva, A. P. Sviridov, P. S. Timashev, I. I. Khodos, V. I. Yusupov, V. Y. Panchenko, and V. N. Bagratashvili, “Synthesis of photoluminescent Si/SiO x core/shell nanoparticles by thermal disproportionation of SiO: Structural and spectral characterization,” J. Mater. Sci. 50 (5), 2247–2256 (2015).Google Scholar
  8. 8.
    Y. Filatov, A. Budyka, and V. Kirichenko, Electrospinning of Micro- and Nanofibers: Fundamentals in Separation and Filtration Processes (Begell House Inc, New York, 2007).Google Scholar
  9. 9.
    S. Wang, X. Qu, and R. C. Zhao, “Mesenchymal stem cells hold promise for regenerative medicine,” Front. Med. 5 (4), 372–378 (2011).Google Scholar
  10. 10.
    J. A. Kode, S. Mukherjee, M. V. Joglekar, and A. A. Hardikar, “Mesenchymal stem cells: Immunobiology and role in immunomodulation and tissue regeneration,” Cytotherapy 11 (4), 377–391 (2009).Google Scholar
  11. 11.
    X. J. Tang and Q. Y. Wu, “Mesenchymal stem cellular adhesion and cytotoxicity study of random biopolyester scaffolds for tissue engineering,” J. Mater. Sci.: Mater. Med. 17, 627–632 (2006).Google Scholar
  12. 12.
    A. A. Olkhov, O. V. Staroverova, A. P. Bonartsev, I. I. Zharkova, E. D. Sklyanchuk, A. L. Iordanskii, S. Z. Rogovina, A. A. Berlin, and A. A. Ishchenko, “Structure and properties of ultrathin poly-3-hydroxybutirate) fibers modified by silicon and titanium dioxide particles,” Polym. Sci., Ser. D 8 (2), 100–109 (2015).Google Scholar
  13. 13.
    A. A. Ol’khov, V. S. Akatov, A. A. Prosvirin, O. V. Staroverova, Yu. N. Filatov, M. A. Gol’dshtrakh, and A. L. Iordanskii, “Implants for reconstructive surgery based on electrospun poly(3-hydroxybutyrate) fibers,” Fibre Chem. 49 (3), 222–226 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Ol’khov
    • 1
    • 2
    • 3
    Email author
  • V. N. Gorshenev
    • 2
  • O. V. Staroverova
    • 3
  • L. V. Bondarenko
    • 1
  • V. I. Perov
    • 1
  • A. L. Iordanskii
    • 2
  1. 1.Plekhanov Russian University of EconomicsMoscowRussia
  2. 2.Emanuel Institute of Biochemical Physics, Russian Academy of SciencesMoscowRussia
  3. 3.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia

Personalised recommendations