Inland Water Biology

, Volume 12, Issue 1, pp 42–48 | Cite as

Effects of Zebra Mussels Dreissena polymorpha (Pallas) on the Microbial Loop in Mesotrophic Mesocosms

  • K. Kalinowska
  • J. Ejsmont-Karabin
  • I. Yu. FeniovaEmail author
  • I. Kostrzewska-Szlakowska
  • M. Rzepecki
  • V. G. Petrosyan
  • D. G. Seleznev


Our goal was to assess the impacts of zebra mussels on the components of the microbial loop (dissolved organic carbon, bacteria, nanoflagellates and ciliates) and their relationships with classic food web components (algae, rotifers, crustaceans) in mesocosm experiment. Zebra mussels were added to mesocosms that were filled with water from a mesotrophic lake (Mazurian Lake District, Poland). Zebra mussels increased concentrations of chlorophyll and caused short-term negative effects on the biotic components of the microbial loop just after the onset of the experiment. Grazing pressure by zebra mussels caused shifts in the taxonomic and trophic structure of ciliates from small species feeding on algae and bacteria to small bacterivorous species. As a result of zebra mussel introduction, the trophic interactions between the components of microbial loop and classic food chain were altered relative to control.


bacteria protists food web trophic relations mesocosm experiment 



We thank Andy Dzialowski for his assistance during preparation of our manuscript and Piotr Stomski for his technical support in our experiment.

This research was supported by the Polish National Science Centre (UMO-2016/21/B/NZ8/00434). Statistical analyses and their interpretations were supported by Russian Science Foundation (project no. 16-14-10323).


Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.


  1. 1.
    Balushkina, E.V. and Vinberg, G.G., Relationship between body weight and size in plankton animals, in Experimental and Field Investigations of Biological Production in Lakes, Leningrad: Nauka, 1978, pp. 58–72.Google Scholar
  2. 2.
    Cotner, J.B., Gardner, W.S., Johnson, J.R., Sada, R.H., Cavaletto, J.F., and Heath, R.T., Effects of zebra mussels (Dreissena polymorpha) on bacterioplankton: evidence for both size-selective consumption and growth stimulation, J. Great Lakes Res., 1995, vol. 21, 517–528.CrossRefGoogle Scholar
  3. 3.
    Ejsmont-Karabin, J., Empirical equations for biomass calculation of planktonic rotifers, Pol. Arch. Hydrobiol., 1998, vol. 45, pp. 513–522.Google Scholar
  4. 4.
    Feniova, I., Dawidowicz, P., Gladyshev, M.I., Kostrzewska-Szlakowska. I., Rzepecki, M., Razlutskij, V., Sushchik, N.N., Majsak, N. and Dzialowski, A.R., Experimental effects of large-bodied Daphnia, fish and zebra mussels on cladoceran community and size structure, J. Plankton Res., 2015, vol. 0, pp. 1–15. doi Google Scholar
  5. 5.
    Frischer, M.E., Nierzwicki-Bauer, S.A, Parsons, R.H., Vathanodorn, K. and Waitkus, K.R., Interactions between zebra mussels (Dreissena Polymorpha) and microbial communities, Can. J. Fish. Aquat. Sci., 2000, vol. 57, pp. 591–599.CrossRefGoogle Scholar
  6. 6.
    Foissner, W., Berger, H., Blatterer, H. and Kohmann, F., Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems, Band I–IV, Bayer, München: Informationberichte des Bayer Landesamtes für Wasserwirtschaft, 1991–1995.Google Scholar
  7. 7.
    Higgins, S.N. and Vander Zanden, M.J., What a difference a species makes: a meta-analysis of dreissenid mussel impacts on freshwater ecosystems, Ecol. Monogr., 2010, vol. 80, pp. 179–196.CrossRefGoogle Scholar
  8. 8.
    Karatayev, A.Y., Burlakova, L.E. and Padilla, D.K., Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers, in Invasive Aquatic Species of Europe—Distribution, Impacts, and Management, Leppäkoski, E., Gollasch, S., and Olenin, S., Eds., Dordrecht: Kluwer, 2002, pp. 433–446.Google Scholar
  9. 9.
    Lavrentyev, P.J., Gardner, W.S., Cavaletto, J.F. and Beaver, J.R., Effects of the zebra mussel (Dreissena polymorpha Pallas) on protozoa and phytoplankton from Saginaw Bay, Lake Huron. J. Great Lakes Res., 1995, vol. 21, pp. 545–557.CrossRefGoogle Scholar
  10. 10.
    Lewandowski, K., Development of populations of Dreissena polymorpha (Pall.) in lakes, Folia Malacologica, 2001, vol. 9, pp. 171–216.CrossRefGoogle Scholar
  11. 11.
    MacIsaac, H.J., Lonnee, C.J. and Leach, J.H., Suppression of microzooplankton by zebra mussels: importance of mussel size, Freshwater Biol., 1995, vol. 34, pp. 379–387.CrossRefGoogle Scholar
  12. 12.
    Miller, E.B. and Watzin, M.C., The effects of zebra mussels on the lower planktonic food web in Lake Champlain, J. Great Lakes Res., 2007, vol. 33, pp. 407–420.CrossRefGoogle Scholar
  13. 13.
    Petrosyan, V.G., The integrated database management system and the statistical analysis of biological data, Biosystem office, Russian Federal Service for Intellectual Property, Certificate no. 2014663194, 2014. DocNumber=2014663194&Type-File=html.Google Scholar
  14. 14.
    Porter, K.G. and Feig, Y.S., The use of DAPI for identifying and counting aquatic microflora, Limnol. Oceanogr., 1980, vol. 25, pp. 943–948.CrossRefGoogle Scholar
  15. 15.
    Raikow, D.F., Sarnelle, O., Wilson, A.E. and Hamilton, S.K., Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels, Limnol. Oceanogr., 2004, vol. 49, pp. 482–487.CrossRefGoogle Scholar
  16. 16.
    Roditi, H.A., Fisher, N.S. and Sañudo-Wilhelmy, S.A., Uptake of dissolved organic carbon and trace elements by zebra mussels, Nature, 2000, vol. 407, pp. 78–80.CrossRefGoogle Scholar
  17. 17.
    Sarnelle, O., Wilson, A.E., Hamilton, S.K., Knoll, L.B. and Raikow, D.F., Complex interactions between the zebra mussel, Dreissena polymorpha, and the harmful phytoplankter, Microcystis aeruginosa, Limnol. Oceanogr., 2005, vol. 50, pp. 896–904.CrossRefGoogle Scholar
  18. 18.
    Sinicyna, O.O. and Zdanowski, B., Development of the zebra mussel, Dreissena polymorpha (Pall.), population in a heated lakes ecosystem. II. Life strategy, Arch. Pol. Fish., 2007, vol. 15, pp. 387–400.Google Scholar
  19. 19.
    Smith, T.E., Stevenson, R.J., Caraco, N.F. and Cole, J.J., Changes in phytoplankton community structure during the zebra mussel (Dreissena polymorpha) invasion of the Hudson River (New York), J. Plankton Res., 1998, vol. 20, pp. 1567–1579.CrossRefGoogle Scholar
  20. 20.
    Sprung, M. and Rose, U., Influence of food size and food quantity on the feeding of the mussel Dreissena polymorpha, Oecologia, 1988, vol. 77, pp. 526–532.CrossRefGoogle Scholar
  21. 21.
    Standard Methods for the Examination of Water and Wastewater, Amer. Publ. Health Assoc., 2005, Washington, USA.Google Scholar
  22. 22.
    Thorp, J.H. and Casper, A.F., Potential effects on zooplankton from species shifts in planktivorous mussels: a field experiment in the St. Lawrence River, Freshwater Biol., 2002, vol. 47, pp. 107–119.CrossRefGoogle Scholar
  23. 23.
    Vanderploeg, H.A., Liebig, J.R., Carmichael, W.W., Agy, M.A., Johengen, T.H., Fahnenstiel, G.L. and Nalepa, T.F., Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie, Can. J. Fish. Aquat. Sci., 2001, vol. 58, pp. 1208–1221.CrossRefGoogle Scholar
  24. 24.
    Weisse, T., Trophic interactions among heterotrophic microplankton, nanoplankton, and bacteria in Lake Constance, Hydrobiologia, 1990, vol. 191, pp. 111–122.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. Kalinowska
    • 1
  • J. Ejsmont-Karabin
    • 2
  • I. Yu. Feniova
    • 3
    Email author
  • I. Kostrzewska-Szlakowska
    • 4
  • M. Rzepecki
    • 2
  • V. G. Petrosyan
    • 3
  • D. G. Seleznev
    • 5
  1. 1.Inland Fisheries Institute in Olsztyn, Department of Lake FisheriesGiżyckoPoland
  2. 2.Nencki Institute of Experimental Biology, Hydrobiological StationMikołajkiPoland
  3. 3.Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia
  4. 4.University of Warsaw, Faculty of BiologyWarsawPoland
  5. 5.Papanin Institute for Biology of Inland Waters, Russian Academy of SciencesBorokRussia

Personalised recommendations