Advertisement

Inland Water Biology

, Volume 12, Issue 1, pp 115–123 | Cite as

Intestinal Microbiocenosis Disorders in Danio rerio (Hamilton, 1882) and Inhibition of Protective Mechanisms under Nickel-Containing Nanoparticle-Induced Effects

  • V. A. Bagirov
  • E. A. SizovaEmail author
  • E. P. Miroshnikova
  • I. A. Gavrish
  • A. V. Konovalov
AQUATIC TOXICOLOGY
  • 2 Downloads

Abstract

The state of the antioxidant system and the intestinal microbiocenosis in Danio rerio (Hamilton, 1822) have been studied with the use of nickel and its oxide nanoparticles released into environments. It is revealed that the nanoparticle-induced toxic effect causes oxidative stress, followed by restructuring of the intestinal microbiocenosis and inhibiting the protective mechanism. A low loading dose and a short period of exposure of the test object to the nickel nanoforms activate the antioxidant defense system of the body in response to the free radical evolution. Chronic conditions and high doses exhaust the antioxidant system under the effect of free-radical hyperproduction during oxidative stress. A change in the microorganism species diversity is ascertained; for instance, Rhodobacter and Methylobacterium replace Citrobacter and Enterobacter, respectively, with the introduction of the nickel oxide nanoparticles, while Bacillus, Acinetobacter, and Rhodobacter replacement occurs with the introduction of nickel nanoparticles. Therefore, the transient microorganisms tend to replace the normal intestinal flora. An increase in the environmental total amount of nickel in the nanoparticle form results in its accumulation in the body of hydrobionts under the effect of the induction of chronic conditions.

Keywords:

Danio rerio survival rate intestinal microbiocenosis catalase superoxide dismutase nickel and nickel oxide nanoparticles 

Notes

ACKNOWLEDGMENTS

This survey was performed with financial support from the Russian Science Foundation, project no. 14-36-00023.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    Amosova, A.A., Amosov, E.A., and Kozulina, AS., Experimental evaluation of a test system for acute toxicity studies of various environmental contaminants in the laboratory, Izv. Samar. Nauch. Tsentra Ross. Akad. Nauk, 2014, no. 5 (2), pp. 1042–1044.Google Scholar
  2. 2.
    Andronov, E.E., Pinaev, A.G., Pershina, E.V., and Chizhevskaya, E.P., Vydelenie DNK iz obraztsov pochvy (metodicheskie ukazaniya) (Isolation of DNA from Soil Samples (Guidelines)), St. Petersburg: Gos. Nauchn. Uchrezhd. Vseross. Nauchno-Issled. Inst. S.-Kh. Mikrobiol., Ross. Akad. S-kh. Nauk, 2011.Google Scholar
  3. 3.
    Buzoleva, L.S., Kalitina, E.G., Bezverbnaya, I.P., and Krivosheeva, A.M., Microbial communities in the coastal surface waters of Zolotoi Rog Bay under the conditions of strong anthropogenic pollution, Oceanology, 2008, vol. 48, no. 6, pp. 819–825.CrossRefGoogle Scholar
  4. 4.
    Burlakova, E.B. and Khrapova, N.G., Peroxidation of membrane lipids and natural antioxidants, Usp. Khim., 1998, vol. 52, no. 9, pp. 540–558.Google Scholar
  5. 5.
    Burlachenko, I.V., Aktual’nye voprosy bezopasnosti kombikormov v akvakul’ture (Relevant Issues of Animal Feed Safety in Aquaculture), Moscow: Vseross. Nauchno-Issled. Inst. Ozern. Rechn. Rybn. Khoz., 2008, pp. 126–155.Google Scholar
  6. 6.
    Dvoskin, Ya.G., Khimicheskaya bezopasnost' i osnovy profilakticheskoi toksikologii: metodicheskoe posobie (Chemical Safety and the Basics of Preventive Toxicology: Assay Guidance Manual), Moscow, 2003.Google Scholar
  7. 7.
    Lankin, V.Z., Tikhaze, A.K., and Belenkov, Yu.N., Free radical processes in health and diseases of the cardiovascular system, Kardiologiya, 2000, vol. 40, no. 7, pp. 48–61.Google Scholar
  8. 8.
    Mamonova, I.A. and Babushkina, I.V., Experimental study of the antibacterial effect of nickel nanoparticles on Pseudomonas aeruginosa clinical strains, Biol. Nauki, 2012, no. 2, pp. 174–178.Google Scholar
  9. 9.
    Men'shikova, E.B., Zenkov, N.K., and Shergin, S.M., Biokhimiya okislitel’nogo stressa. Oksidanty i antioksidanty (Biochemistry of Oxidative Stress: Oxidants and Antioxidants), Novosibirsk: Sib. Otd., Ross. Akad. Med. Nauk, 1994.Google Scholar
  10. 10.
    Obushchenko, S.V. and Gnedenko, V.V., Monitoring of the content of trace elements and heavy metals in the soils of the Samara oblast, Mezhdunar. Zh. Prikl. Fundam. Issled., 2014, no. 7, pp. 30–34.Google Scholar
  11. 11.
    Parshukov, A.N., Microbiocenosis of rainbow trout in cage farms in Karelia, Cand. Sci. (Biol.) Dissertation, Petrozavodsk, 2011.Google Scholar
  12. 12.
    Stal'naya, I.D. and Garishchvili, T.G., Metody opredeleniya malonovogo dial’degida s pomoshch’yu tiobarbiturovoi kisloty. Sovremennye metody v biokhimii (Methods for Determination of Malonic Dialdehyde Using Thiobarbituric Acid: Modern Methods in Biochemistry), Moscow: Meditsina, 1977.Google Scholar
  13. 13.
    Ates, M., Arslan, Z., Demir, V., et al., Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus), Environ. Toxicol., 2015, vol. 30, no. 1, pp. 119–128.CrossRefGoogle Scholar
  14. 14.
    Austin, B., The bacterial microflora of fish, Sci. World J., 2002, vol. 2, pp. 558–572.CrossRefGoogle Scholar
  15. 15.
    Bennett, K.W. and Eley, A., Fusobacteria: new taxonomy and related diseases, J. Med. Microbiol., 1993, vol. 39, no. 4, pp. 246–254.CrossRefGoogle Scholar
  16. 16.
    Cahill, M.M., Bacterial flora of fishes: a review, Microb. Ecol., 1990, vol. 19, no. 1, pp. 21–41.CrossRefGoogle Scholar
  17. 17.
    Choi, J.E., Kim, S., Ahn, J.H., et al., Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish, Aquat. Toxicol., 2010, vol. 100, no. 2, pp. 151–159.CrossRefGoogle Scholar
  18. 18.
    Edgar, R.C., Search and clustering orders of magnitude faster than blast, Bioinformatics, 2010, vol. 26, no. 9, pp. 2460–2461.CrossRefGoogle Scholar
  19. 19.
    Fidopiastis, P.M., Microbial activity in the gut of an herbivorous marine fish, Masters Abstracts International, 1996, vol. 34, no. 3, p. 1102.Google Scholar
  20. 20.
    Ganesan, S., Anaimalai Thirumurthi, N., Raghunath, A., et al., Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos, J. Appl. Toxicol., 2016, vol. 36, no. 4, pp. 554–567.CrossRefGoogle Scholar
  21. 21.
    Govindasamy, R. and Rahuman, A.A., Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus), J. Environ. Sci., 2012, vol. 24, no. 6, pp. 1091–1098.CrossRefGoogle Scholar
  22. 22.
    Hao, L., Wang, Z., and Xing, B., Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in juvenile carp (Cyprinus carpio), J. Environ. Sci., 2009, vol. 21, no. 10, pp. 1459–1466.CrossRefGoogle Scholar
  23. 23.
    Huse, S.M., Mark, WelchD.B., Voorhis, A., et al., Vamps: a website for visualization and analysis of microbial population structures, BMC Bioinformatics, 2014, vol. 15, p. 41.CrossRefGoogle Scholar
  24. 24.
    Jankauskiene, R., Defense mechanisms in fish: lactobacillus genus bacteria of intestinal wall in feeding and hibernating carps, Ekologija, 2000, vol. 1, pp. 3–6.Google Scholar
  25. 25.
    Larsen, A.M., Mohammed, H.H., and Arias, C.R., Characterization of the gut microbiota of three commercially valuable warm water fish species, J. Appl. Microbiol., 2014, vol. 116, no. 6, pp. 1396–1404.CrossRefGoogle Scholar
  26. 26.
    Lindström, E.S., Vrede, K., and Leskinen, E., Response of a member of the verrucomicrobia, among the dominating bacteria in a hypolimnion, to increased phosphorus availability, J. Plankton Res., 2004, vol. 26, no. 2, pp. 241–246.CrossRefGoogle Scholar
  27. 27.
    Moore, M.N., Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?, Environ. Int., 2006, vol. 32, pp. 967–976.CrossRefGoogle Scholar
  28. 28.
    Newton, R.J., et al., A guide to the natural history of freshwater lake bacteria, Microbiol. Mol. Biol. Rev., 2011, vol. 75, pp. 14–49.CrossRefGoogle Scholar
  29. 29.
    Guideline for Testing of Chemicals, Guideline 203 // Fish, Acute. and Toxicity, Test., Paris: Organization of Economic Cooperation, Development, 1992, p. 9.Google Scholar
  30. 30.
    Piccinetti, C.C., Montis, C., Bonini, M., et al., Transfer of silica-coated magnetic (Fe3O4) nanoparticles through food: a molecular and morphological study in zebrafish, Zebrafish, 2014, vol. 11, no. 6, pp. 567–579.CrossRefGoogle Scholar
  31. 31.
    Ringo, E., Lodemel, J.B., Myklebust, R., et al., Epithelium-associated bacteria in the gastrointestinal tract of arctic charr (Salvelinus alpinus L.). An electron microscopical study, J. Appl. Microbiol., 2001, vol. 90, pp. 294–300.CrossRefGoogle Scholar
  32. 32.
    Shah, V., Taratula, O., Garbuzenko, O.B., et al., Genotoxicity of different nanocarriers: possible modifications for the delivery of nucleic acids, Curr. Drug Discov. Technol., 2013, vol. 10, no. 1, pp. C. 8–15.Google Scholar
  33. 33.
    Shahravan, A., Desai, T., and Matsoukas, T., Passivation of aluminum nanoparticles by plasma-enhanced chemical vapor deposition for energetic nanomaterials, ACS Appl. Mater. interfaces, 2014, vol. 10, no. 6, pp. 7942–7947.CrossRefGoogle Scholar
  34. 34.
    Shvedova, A.A., Pietroiusti, A., Fadeel, B., and Kagan, V.E., Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress, Toxicol. Appl. Pharmacol., 2012, vol. 261, no. 2, pp. 121–133.CrossRefGoogle Scholar
  35. 35.
    Spanggaard B., Jørgensen, F., Gram, L., and Huss, H.H., Antibiotic resistance in bacteria isolated from three freshwater fish farms and an unpolluted stream in Denmark, Aquaculture, 1993, vol. 115, nos. 3–4, pp. 195–207.CrossRefGoogle Scholar
  36. 36.
    Srikanth, K., Mahajan, A., Pereira, E., et al., Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells, J. Appl. Toxicol., 2015, vol. 35, no. 10, pp. 1133–1140.CrossRefGoogle Scholar
  37. 37.
    Sugita, H., Miyajima, C., and Deguchi, Y., The vitamin B12 producing ability of the intestinal microflora of freshwater fish, Aquaculture, 1992, vol. 10, pp. 267–276.Google Scholar
  38. 38.
    Trpkovic, A., Todorovic-Markovic, B., and Trajkovic, V., Toxicity of pristine versus functionalized fullerenes: mechanisms of cell damage and the role of oxidative stress, Arch. Toxicol., 2012, vol. 86, no. 12, pp. 1809–1827.CrossRefGoogle Scholar
  39. 39.
    Wan, R., Mo, Y., Feng, L., Chien, S., et al., DNA damage caused by metal nanoparticles: involvement of oxidative stress and activation of ATM, Chem. Res. Toxicol., 2012, vol. 25, pp. 1402–1411.CrossRefGoogle Scholar
  40. 40.
    Yausheva, E., Sizova, E., Lebedev, S., et al., Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora, Environ. Sci. Pollut. Res., 2016, vol. 23, pp. 13 245–13 254.CrossRefGoogle Scholar
  41. 41.
    Zhang, J., Kobert, K., Flouri, T., and Stamatakis, A., PEAR: a fast and accurate illumina paired-end read merger, Bioinformatics, 2014, vol. 30, no. 5, pp. 614–620.CrossRefGoogle Scholar
  42. 42.
    Zhang, W., Sun, X., Chen, L., et al., Toxicological effect of joint cadmium selenium quantum dots and copper ion exposure on zebrafish, Environ. Toxicol. Chem., 2012, vol. 31, no. 9, pp. 2117–2123.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Bagirov
    • 1
  • E. A. Sizova
    • 2
    • 3
    Email author
  • E. P. Miroshnikova
    • 3
  • I. A. Gavrish
    • 3
  • A. V. Konovalov
    • 4
  1. 1.Ernst All-Russia Research Institute for Animal Husbandry, Federal Science CenterDubrovitsyRussia
  2. 2.Federal Research Centre of Biological Systems and Agrotechnologies RASOrenburgRussia
  3. 3.Orenburg State UniversityOrenburgRussia
  4. 4.Yaroslavl Research Institute for Animal Husbandry and Feed Production, Williams Federal Science Center for Feed Production and AgroecologyMikhailovskiyRussia

Personalised recommendations