Inland Water Biology

, Volume 11, Issue 4, pp 477–484 | Cite as

Influence of Illumination on the Locomotor Activity in Smolts of European River Lamprey Lampetra fluviatilis (L.)

  • A. O. ZvezdinEmail author
  • A. V. Kucheryavyy
  • I. A. Tsimbalov
  • V. V. Kostin
  • D. S. Pavlov


Behavior of smolts of European lamprey and changes in their locomotor activity have been studied at varying illumination regimes. The maximal level of the locomotor activity of the smolts in aquaria and in an Open Field experimental device is recorded at night at the lowest studied illumination (0.9 lx). This maximum coincides in time with the appearance of migrating smolts in the river channel flow. In daytime, at illumination of 900 lx, the locomotor activity of the smolts is lower, which corresponds to the absence of daytime downstream migration. The change in the locomotor activity over 24 h is one of the mechanisms by which the downstream migration of lamprey smolts is achieved. The increase in the locomotor activity starts soon after evening decrease in illumination below 0.1 lx and falls on the first half of night. The period of increased locomotor activity ends before morning twilight. The presence of the circadian rhythms of locomotor activity in smolts of the European river lamprey is suggested.


European river lamprey Lampetra fluviatilis (L.) smolts locomotor activity migratory behavior mechanisms of migration circadian rhythms illumination chronobiology 



  1. 1.
    Abakumov, V.A., The taxonomy and ecology of the Far Eastern brook lamprey from the Amur River basin, Vopr. Ikhtiol., 1960, no. 15, pp. 43–54.Google Scholar
  2. 2.
    Berg, L.S., Ryby presnykh vod SSSR i sopredel’nykh stran (Freshwater Fishes of the USSR and Adjacent Countries), Moscow: Akad. Nauk SSSR, 1948, part 1.Google Scholar
  3. 3.
    Gritsenko, O.F., On the environmental parallelism between lamprey and salmon, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., 1968, vol. 65, pp. 157–168.Google Scholar
  4. 4.
    Pavlov, D.S., Zvezdin, A.O., Kostin, V.V., et al., Temporal characteristics of downstream migration of smolts of the European river lamprey Lampetra fluviatilis in the Chernaya River, Biol. Bull. (Moscow), 2017, vol. 44, no. 3, pp. 290–295. doi 10.7868/S0002332917030067CrossRefGoogle Scholar
  5. 5.
    Pavlov, D.S., Kirillova, E.A., and Kirillov, P.I., Downstream migration of juvenile salmonids in the Utkholok River and its tributaries (Northwestern Kamchatka). Communication 2. Downstream migration of young fish of the second and subsequent years of life, Izv. Tikhookean. Nauchno-Issled. Inst. Rybn. Khoz. Okeanogr., Biol. Resur., 2011, vol. 164, pp. 27–73.Google Scholar
  6. 6.
    Pavlov, D.S., Lupandin, A.I., and Kostin, V.V., Mekhanizmy pokatnoi migratsii molodi rechnykh ryb (Mechanisms of Downstream Migration of Juvenile Freshwater Fishes), Moscow: Nauka, 2007.Google Scholar
  7. 7.
    Pavlov, D.S., Nazarov, D.Yu., Zvezdin, A.O., and Kucheryavyi, A.V., Downstream migration of early larvae of the European river lamprey Lampetra fluviatilis, Dokl. Biol. Sci., 2014, vol. 459, pp. 344–347. doi 10.7868/S0869565214320231CrossRefGoogle Scholar
  8. 8.
    Pavlov, D.S., Nezdolii, V.K., and Khodorevskaya, R.P., Pokatnaya migratsiya molodi ryb v rekakh Volga i Ili (Downstream Migration of Juvenile Fishes in Volga and Ili Rivers), Moscow: Nauka, 1981.Google Scholar
  9. 9.
    Savvaitova, K.A., Pavlov, D.S., Kuzishchin, K.V., et al., Ecological analogies in the Pacific lamprey Lethenteron camtschaticum and the mykiss Parasalmo mykiss in Kamchatka, J. Ichthyol., 2007, vol. 47, no. 5, pp. 341–347.CrossRefGoogle Scholar
  10. 10.
    Binder, T.R., Cooke, S.J., and Hinch, S.G., The biology of fish migration, in Encyclopedia of Fish Physiology: From Genome to Environment, San Diego: Acad. Press, 2011, vol. 3, pp. 1921–1927.Google Scholar
  11. 11.
    Byrne, J., The effect of photoperiod and temperature on the daily pattern of locomotor activity in juvenile sockeye (Oncorhynchus nerka Walbaum), Ph. D. Thesis, Vancouver, Canada: Dept. Zool. Univ. British Columbia, 1968.Google Scholar
  12. 12.
    Claridge, P.N., Potter, I.C., and Hughes, G.M., Circadian rhythms of activity, ventilator frequency and heart rate in adult lamprey, Lampetra fluviatilis, J. Zool., 1973, vol. 171, pp. 239–250.CrossRefGoogle Scholar
  13. 13.
    Dauble, D.D., Moursund, R.A., and Bleich, M.D., Swimming behavior of juvenile pacific lamprey, Lampetra tridentate, Environ. Biol. Fish., 2006, vol. 75, pp. 167–171. doi 10.1007/S1064100546987CrossRefGoogle Scholar
  14. 14.
    Fernandes, W.P.A., Ibbotson, A.T., Griffiths, S.W., et al., Does relatedness influence migratory timing and behaviour in Atlantic salmon smolts, Anim. Behav., 2015, vol. 106, pp. 191–199. doi 10.1016/j.anbehav.2015.06.006CrossRefGoogle Scholar
  15. 15.
    Goodman, D.H., Reid, S.B., Som, N.A., and Poytress, W.R., The punctuated seaward migration of pacific lamprey (Entosphenus tridentatus): environmental cues and implications for stream flow management, Can. J. Fish. Aquat. Sci., 2015, vol. 72, no. 12, pp. 1817–1828. doi 10.1139/cjfas-2015-0063CrossRefGoogle Scholar
  16. 16.
    Hoar, W.S., Control and timing of fish migration, Biol. Rev., 1953, vol. 28, pp. 437–452.CrossRefGoogle Scholar
  17. 17.
    Hoar, W.S., Smolt transformation: evolution, behavior, and physiology, J. Fish. Res. Board Can., 1976, vol. 33, pp. 1233–1253.CrossRefGoogle Scholar
  18. 18.
    Hoar, W.S., The behaviour of chum, pink and coho salmon in relation to their seaward migration, J. Fish. Res. Board Can., 1951, vol. 8, no. 4, pp. 241–263.CrossRefGoogle Scholar
  19. 19.
    Igoe, F., Quigley, D.T.G., Marnell, F., et al., The sea lamprey Petromyzon marinus (L.), river lamprey Lampetra fluviatilis (L.) and brook lamprey Lampetra planeri (Bloch) in Ireland: general biology, ecology, distribution and status with recommendations for conservation, Biol. Environ: Proc. Roy. Irish Acad., 2004, vol. 104B, no. 3, pp. 43–56.Google Scholar
  20. 20.
    Kirillova, E., Kirillov, P., Kucheryavyy, A., and Pavlov, D., Common behavioral adaptations in lamprey and salmonids, in Jawless Fishes of the World, Cambridge: Cambridge Schol. Publ., 2016, vol. 2, pp. 196–213.Google Scholar
  21. 21.
    Kucheryavyy, A.V., Tsimbalov, I., Kirillova, E., et al., The need for a new taxonomy for lampreys, in Jawless Fishes of the World, Cambridge: Scholars Publ., 2016, vol. 1, pp. 251–278.Google Scholar
  22. 22.
    Long, C.W., Diurnal movement and vertical distribution of juvenile anadromous fish in turbine intakes, Fish. Bull., 1968, vol. 66, pp. 599–609.Google Scholar
  23. 23.
    Lopez-Olmeda, J.F., Madrid, J.A., and Sanchez-Vazquez, F.J., Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms, Chronobiol. Int., 2006, vol. 23, no. 3, pp. 537–550. doi 10.1080/07420520600651065CrossRefGoogle Scholar
  24. 24.
    Lopez-Olmeda, J.F. and Sanchez-Vazquez, F.J., Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature, Chronobiol. Int., 2009, vol. 26, no. 2, pp. 200–218. doi 10.1080/07420520902765928CrossRefGoogle Scholar
  25. 25.
    Lucas, M. and Bracken, F., Potential Impacts of Hydroelectric Power Generation on Downstream-Mowing Lampreys of Howsham, Yorkshire Derwent, Durham: Durh. Univ. School Biol. Biomed. Sci., 2010.Google Scholar
  26. 26.
    Masuda, T., Iigo, M., Mizusawa, K., et al., Variations in plasma melatonin levels of the rainbow trout (Oncorhynchus mykiss) under various light and temperature conditions, Zool. Sci., 2003, vol. 20, pp. 1011–1016. doi doi 10.2108/zsj.20.1011CrossRefGoogle Scholar
  27. 27.
    Menaker, M., Moreira, L.F., and Tosini, G., Evolution of circadian organization in vertebrates, Braz. J. Med. Biol. Res., 1997, vol. 30, pp. 305–313.CrossRefGoogle Scholar
  28. 28.
    Morita, Y., Tabata, M., Uchida, K., and Samejima, M., Pineal-dependent locomotor activity of lamprey, Lampetra japonica, measured in relation to ld cycle and circadian rhythmicity, J. Comp. Physiol. A, 1992, vol. 171, pp. 555–562.CrossRefGoogle Scholar
  29. 29.
    Moser, M.L., Jackson, A.D., Lucas, M.C., and Mueller, R.P., Behavior and potential threats to survival of migrating lamprey ammocoetes and macrophtalmia, Rev. Fish. Biol. Fish., 2014, vol. 25, no. 1, pp. 1–14. doi 10.1007/s11160-014-9372-8Google Scholar
  30. 30.
    Moursund, R.A., Dauble, D.D., and Bleich, M.D., Effects of John Day Dam bypass screens and project operations on the behavior and survival of juvenile Pacific lamprey (Lampetra tridentata), Rept. U.S. Army Corps Eng. Portland, Oregon, 2000.Google Scholar
  31. 31.
    Philp, A.R., Garcia-Fernandez, J.M., Soni, B.G., et al., Vertebrate ancient (VA) opsin and extraretinal photoreception in the Atlantic salmon (Salmo salar), J. Exp. Biol., 2000, vol. 203, pp. 1925–1936.Google Scholar
  32. 32.
    Potter, I.C. and Huggins, R.J., Observations on the morphology, behaviour and salinity tolerance of downstream migrating river lampreys (Lampetra fluviatilis), J. Zool., 1973, vol. 169, pp. 365–379.CrossRefGoogle Scholar
  33. 33.
    del Pozo, A., Sánchez-Férez, J.A., and Sánchez-Vázquez, F.J., Circadian rhythms of self-feeding and locomotor activity in zebrafish (Danio rerio), Chronobiol. Int., 2011, vol. 28, no. 1, pp. 39–47. doi 10.3109/07420528.2010.530728CrossRefGoogle Scholar
  34. 34.
    Samejima, M., Shavali, S., Tamotsu, S., et al., Light and temperature-dependence of the melatonin secretion rhythm in the pineal organ of the lamprey, Lampetra japonica, Jpn. J. Physiol., 2000, vol. 50, pp. 437–442.CrossRefGoogle Scholar
  35. 35.
    Thiel, R. and Salewski, V., Verteilung und Wanderung von Neuenaugen im Elbeästuar (Deutschland), Limnologica, 2003, vol. 33, pp. 214–226. doi 10.1016/S0075-9511(03)80015-4CrossRefGoogle Scholar
  36. 36.
    Tuunainen, P., Ikonen, E., and Auvinen, H., Lamprey and lamprey fishing in Finland, Can. J. Fish. Aquat. Sci., 1980, vol. 37, pp. 1953–1959.CrossRefGoogle Scholar
  37. 37.
    Waterstraat, A. and Krappe, M., Beiträge zur Ökologie und Verbreitung von FFH-Fischarten und Rundmäulern in Mecklenburg-Vorpommern: 1. Das Flußneuenauge (Lampetra fluviatilis L.) im Peenesystem, Natur. Mecklenburg-Vorpommern, 2000, vol. 35, pp. 64–79.Google Scholar
  38. 38.
    Zhdanova, I.V. and Reebs, S.G., Circadian rhythms in fish, Behav. Physiol. Fish, 2006, vol. 24, pp. 197–238. doi 10.1016/S1546-5098(05)24006-2CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. O. Zvezdin
    • 1
    Email author
  • A. V. Kucheryavyy
    • 1
  • I. A. Tsimbalov
    • 1
  • V. V. Kostin
    • 1
  • D. S. Pavlov
    • 1
  1. 1.Severtsov Institute of Ecology and Evolution, Russian Academy of SciencesMoscowRussia

Personalised recommendations