Inland Water Biology

, Volume 11, Issue 4, pp 485–491 | Cite as

Organization of Three-Spined Stickleback Gasterosteus aculeatus L. (Gasterosteidae: Pisces) Exploratory Behavior in a Plus Maze

  • N. A. PankovaEmail author
  • A. A. Bolotovskiy
  • B. A. Levin
  • V. A. Nepomnyashchikh


Three-spined sticklebacks of different ages use various simple strategies of exploratory behavior in an unfamiliar plus maze. These strategies involve a specific order of visits to the maze arms and they alternate during maze exploration. One of the strategies (touring) involves sequential visits to the arms during movement in a clockwise or counterclockwise direction. This strategy reduces the probability of returning to recently visited arms, but it does not require memorizing the sequence of arms visited. Another strategy consists of repeated shuttling between any two arms. Random transitions between arms are also observed. These transitions are difficult to explain within the concept of a specific simple strategy. An analysis of maze exploration strategies is proposed for comparative studies of behavioral organization in organisms of different taxonomic levels occupying different ecological niches.


fish Gasterosteus aculeatus behavior maze 



Financial support for the present work was provided by the Russian Foundation for Basic Research (projects no. 15-04-06379-a, 15-34-20416, and 15-04-03586-a).


  1. 1.
    Zyuganov, V.V., Family Gasterosteidae of the world fauna, in Fauna SSSR. Ryby (Fauna of the USSR: Fishes), Leningrad: Nauka, 1991, vol. 5, no. 1.Google Scholar
  2. 2.
    Mikheev, V.N., Neodnorodnost’ sredy i troficheskie otnosheniya u ryb (Heterogeneity of the Environment and Trophic Relationships in Fishes), Moscow: Nauka, 2006.Google Scholar
  3. 3.
    Nepomnyashchikh, V.A., Pankova, N.A., Osipova, E.A., et al., Spontaneous organization of animal behavior in unfamiliar surroundings, in XVIII Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya “Neiroinformatika-2016”. Lektsii po neiroinformatike (XVIII Int. Sci.-Eng. Conf. “Neuroinformatics-2016,” Lectures on Neuroinformatics), Moscow: Nats. Issled. Yad. Univ. “Mosk. Inzh.-Fiz. Inst.,” 2016, pp. 171–192.Google Scholar
  4. 4.
    Runyon, R.P., Nonparametric Statistics. A Contemporary Approach, Massachusetts: Addison–Wesley, 1977.Google Scholar
  5. 5.
    Balcı F., Ramey-Balcı P.A., Ruamps, P., Spontaneous alternation and locomotor activity in three species of marine crabs: green crab (Carcinus maenas), blue crab (Callinectes sapidus), and fiddler crab (Uca pugnax), J. Comp. Psychol., 2014, vol. 128, no. 1, pp. 65–73.CrossRefGoogle Scholar
  6. 6.
    Benureau, F. and Oudeyer, P.Y., Diversity-driven selection of exploration strategies in multi-armed bandits, in Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), 2015, Providence: IEEE, 2015, pp. 135–142.Google Scholar
  7. 7.
    Dubreuil, D., Tixier, C., Dutrieux, G., and Edeline, J.M., Does the radial arm maze necessarily test spatial memory?, Neurobiol. Learn. Mem., 2003, vol. 79, no. 1, pp. 109–117.CrossRefGoogle Scholar
  8. 8.
    Gottlieb, J., Oudeyer, P.Y., Lopes, M., and Baranes, A., Information-seeking, curiosity, and attention: computational and neural mechanisms, Trends Cognit. Sci., 2013, vol. 17, no. 11, pp. 585–593.CrossRefGoogle Scholar
  9. 9.
    Grossman, L., Stewart, A., Gaikwad, S., et al., Effects of piracetam on behavior and memory in adult zebrafish, Brain Res. Bull., 2011, vol. 85, no. 1, pp. 58–63.Google Scholar
  10. 10.
    Hliňák, Z. and Krejčí, I., Spontaneous alternation behaviour in rats: kynurenic acid attenuated deficits induced by MK-801, Behav. Brain Res., 2006, vol. 168, no. 1, pp. 144–149.CrossRefGoogle Scholar
  11. 11.
    Hölter, S.M., Tzschentke, T.M., and Schmidt, W.J., Effects of amphetamine, morphine and dizocilpine (MK-801) on spontaneous alternation in the 8-arm radial maze, Behav. Brain Res., 1996, vol. 81, no. 1, pp. 53–59.CrossRefGoogle Scholar
  12. 12.
    Hughes, R.N. and Blight, C.M., Algorithmic behaviour and spatial memory are used by two intertidal fish species to solve the radial maze, Anim. Behav, 1999, vol. 58, no. 3, pp. 601–613.CrossRefGoogle Scholar
  13. 13.
    Jones, M.A., Mason, G.J., and Pillay, N., Correlates of birth origin effects on the development of stereotypic behaviour in striped mice, Rhabdomys, Anim. Behav., 2011, vol. 82, no. 1, pp. 149–159.CrossRefGoogle Scholar
  14. 14.
    Lennarz, R.C., The role of extramaze cues in spontaneous alternation in a plus-maze, Learn. Behav., 2008, vol. 36, no. 2, pp. 138–144.CrossRefGoogle Scholar
  15. 15.
    Loh, E.A., Smith, A.M., and Roberts, D.C.S., Evaluation of response perseveration of rats in the radial arm maze following reinforcing and nonreinforcing drugs, Pharmacol., Biochem. Behav., 1993, vol. 44, no. 3, pp. 735–740.CrossRefGoogle Scholar
  16. 16.
    Makukhin, K. and Bolland, S., Exploring the periphery of knowledge by intrinsically motivated systems, in Artificial Life and Computational Intelligence, Cham. Springer Int. Publ., 2015, pp. 49–61.Google Scholar
  17. 17.
    Maximino, C., de Brito, T.M., da Silva Batista, A.W., et al., Measuring anxiety in zebrafish: a critical review, Behav. Brain Res., 2010, vol. 214, no. 2, pp. 157–171.CrossRefGoogle Scholar
  18. 18.
    Montgomery, K.C., The relation between exploratory behavior and spontaneous alternation in the white rat, J. Comp. Physiol. Psychol., 1951, vol. 44, no. 6, pp. 582–589.CrossRefGoogle Scholar
  19. 19.
    Montgomery, K.C., Exploratory behavior and its relation to spontaneous alternation in a series of maze exposures, J. Comp. Physiol. Psychol., 1952, vol. 45, no. 1, pp. 50–57.CrossRefGoogle Scholar
  20. 20.
    Mueller-Paul, J., Wilkinson, A., Hall, G., and Huber, L., Response-stereotypy in the jewelled lizard (Timon lepidus) in a radial-arm maze, Herpetol. Notes, 2012, vol. 5, no. 2, pp. 243–246.Google Scholar
  21. 21.
    Ragozzino, M.E., Pal, S.N., Unick, K., et al., Modulation of hippocampal acetylcholine release and spontaneous alternation scores by intrahippocampal glucose injections, J. Neurosci., 1998, vol. 18, no. 4, pp. 1595–1601.CrossRefGoogle Scholar
  22. 22.
    Ramey, P.A., Teichman, E., Oleksiak, J., and Balci, F., Spontaneous alternation in marine crabs: invasive versus native species, Behav. Processes, 2009, vol. 82, no. 1, pp. 51–55.CrossRefGoogle Scholar
  23. 23.
    Red’ko, V.G., Nepomnyashchikh, V.A., and Osipova, E.A., Model of fish exploratory behavior in mazes, Biol. Inspired Cognit. Archit., 2015, vol. 13, no. 1, pp. 9–16.CrossRefGoogle Scholar
  24. 24.
    Roitblat, H.L., Tham, W., and Golub, L., Performance of Betta splendens in a radial arm maze, Anim. Learn. Behav., 1982, vol. 10, no. 1, pp. 108–114.CrossRefGoogle Scholar
  25. 25.
    Sison, M. and Gerlai, R., Associative learning in zebrafish (Danio rerio) in the plus maze, Behav. Brain Res., 2010, vol. 207, no. 1, pp. 99–104.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Pankova
    • 1
    Email author
  • A. A. Bolotovskiy
    • 1
  • B. A. Levin
    • 1
    • 2
  • V. A. Nepomnyashchikh
    • 1
  1. 1.Papanin Institute of Inland Water Biology, Russian Academy of SciencesBorokRussia
  2. 2.Cherepovets State UniversityCherepovetsRussia

Personalised recommendations