Lobachevskii Journal of Mathematics

, Volume 40, Issue 11, pp 2013–2017 | Cite as

Reflection of Acoustic Waves Falling Under a Direct Angle to the Interface of Two Polydisperse Multi-Fraction Gas Suspensions

  • E. A. TeregulovaEmail author
  • D. D. GubaidullinaEmail author


The features of the reflection and refraction of an acoustic wave passing through the boundary of two polydisperse multifraction gas suspensions at a right angle are studied in the work. A mathematical model is presented. Dispersion relation is obtained. Formulas for calculating the impedance of a polydisperse multifraction gas suspension, reflection and refraction coefficients are derived. The dependence of the module of the reflection coefficient on the dimensionless frequency is plotted.

Keywords and phrases

gas suspension acoustic waves dispersion equation impedance reflection coefficient refraction coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere, New York, 1990), Vols. 1, 2.Google Scholar
  2. 2.
    S. Temkin, Suspension Acoustics: An Introduction to the Physics of Suspension (Cambridge Univ. Press, Cambridge, 2005).CrossRefGoogle Scholar
  3. 3.
    D. A. Gubaidullin, Dynamics of Two-Phase Vapor-Gas-Droplet Mixtures (Kazan. Mat. Obshch., Kazan, 1998) [in Russian].Google Scholar
  4. 4.
    R. I. Nigmatulin, A. I. Ivandaev, and D. A. Gubaidullin, “On the non-monotonic dependence of the dissipation of sound on the concentration of drops in a suspension in gas,” Sov. Phys. Dokl. 36, 68–70 (1991).zbMATHGoogle Scholar
  5. 5.
    D. A. Gubaidullin and A. I. Ivandaev, “Influence of phase transitions on sound propagation in fogs: Comparison of theory with experiment,” J. Appl. Mech. Tech. Phys. 31, 820–827 (1990).CrossRefGoogle Scholar
  6. 6.
    D. A. Gubaidullin and A. I. Ivandaev, “Dynamics of small-amplitude pulse waves in vapor-gas-droplet mixtures,” J. Appl. Mech. Tech. Phys. 36, 106–113 (1995).Google Scholar
  7. 7.
    N. A. Gumerov, A. I. Ivandaev, and R. I. Nigmatulin, “Sound waves in monodisperse gas-particle or vapor-droplet mixtures,” J. Fluid Mech. 193, 53–74 (1988).CrossRefGoogle Scholar
  8. 8.
    D. A. Gubaidullin, A. A. Nikiforov, and E. A. Utkina, “Acoustic waves in two-fraction mixtures of gas with vapor, droplets and solid particles of different materials and sizes in the presence of phase transitions,” Fluid Dyn. 46, 72–79 (2011).MathSciNetCrossRefGoogle Scholar
  9. 9.
    D. A. Gubaidullin, A. A. Nikiforov, and E. A. Utkina, “Effect of the phase transformations on acoustics of a mixture of gas with vapor, droplets, and solid particles,” High Temp. 49, 911–916 (2011).CrossRefGoogle Scholar
  10. 10.
    D. A. Gubaidullin, E. A. Teregulova, and D. D. Gubaidullina, “Acoustic wave propagation in multifraction gas suspensions,” High Temp. 53, 713–718 (2015).CrossRefGoogle Scholar
  11. 11.
    J. E. Cole and R. A. Dobbins, “Measurements of attenuation and dispersion of sound by a warm air fog,” J. Atmos. Sci. 28, 202–209 (1971).CrossRefGoogle Scholar
  12. 12.
    G. A. Davidson, “Sound propagation in fogs,” J. Atmos. Sci. 32, 2201–2205 (1975).CrossRefGoogle Scholar
  13. 13.
    R. Ishii and H. Matsuhisa, “Steady reflection, absorption and transmission of small disturbances by as creen of dusty gas,” J. Fluid Mech. 130, 259–277 (1983).CrossRefGoogle Scholar
  14. 14.
    V. S. Shagapov and V. V. Sarapulova, “Features of sound refraction in the atmosphere in fog,” Izv Atmos. Ocean. Phys. 50, 602–609 (2014).CrossRefGoogle Scholar
  15. 15.
    V. S. Shagapov and V. V. Sarapulova, “Reflection and refraction of acoustic waves at the interface between a gas and a disperse systems,” J. Appl. Mech. Tech. Phys. 56, 838–847 (2015).CrossRefGoogle Scholar
  16. 16.
    D. A. Gubaidullin and Y. V. Fedorov, “Peculiarities of acoustic wave reflection from a boundary or layer of a two-phase medium,” Acoust. Phys. 64, 164–174 (2018).CrossRefGoogle Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).Google Scholar
  18. 18.
    L. M. Brekhovsky, Waves in Layered Media (Nauka, Moscow, 1973; Academic, New York, 1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Mechanics and Engineering, Kazan Scientific CenterRussian Academy of SciencesKazanRussia

Personalised recommendations