Lobachevskii Journal of Mathematics

, Volume 40, Issue 1, pp 24–35 | Cite as

On Continuous Multifunctions in Ideal Topological Spaces

  • C. BoonpokEmail author


The purpose of the present paper is to introduce the concepts of upper and lower *-continuous multifunctions. Several characterizations of upper and lower *-continuous multifunctions are investigated. The relationships between upper and lower *-continuous multifunctions and the other types of continuity are discussed.

Keywords and phrases

*-open set upper *-continuous multifunction lower *-continuous multifunction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Levine, “A decomposition of continuity in topological spaces,” Am. Math. Mon. 68, 44–46 (1961).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    V. Popa, “Weakly continuous multifunctions,” Boll. Un. Mat. Ital. V, Ser. A 15, 379–388 (1978).MathSciNetzbMATHGoogle Scholar
  3. 3.
    R. E. Smithson, “Almost and weak continuity for multifunctions,” Bull. Calcutta Math. Soc. 70, 383–390 (1978).MathSciNetzbMATHGoogle Scholar
  4. 4.
    T. Noiri and V. Popa, “On upper and lower M–continuous multifunctions,” Filomat 14, 73–86 (2000).MathSciNetzbMATHGoogle Scholar
  5. 5.
    T. Noiri and V. Popa, “A unified theory of weak continuity for multifunctions,” Stud. Cerc. St. Ser. Math. Univ. Bacău 16, 167–200 (2006).MathSciNetzbMATHGoogle Scholar
  6. 6.
    M. K. Singal and A. R. Singal, “Almost continuous mappings,” Yokohama Math. J. 16, 67–73 (1968).MathSciNetzbMATHGoogle Scholar
  7. 7.
    V. Popa, “Almost continuous multifunctions,” Mat. Vesn. 34, 75–84 (1982).MathSciNetzbMATHGoogle Scholar
  8. 8.
    V. Popa and T. Noiri, “On upper and lower almost α–continuous multifunctions,” Demonstratio Math. 29, 381–396 (1996).MathSciNetzbMATHGoogle Scholar
  9. 9.
    V. Popa and T. Noiri, “Almost α–continuous multifunctions,” Filomat 12, 39–52 (1998).MathSciNetzbMATHGoogle Scholar
  10. 10.
    V. Popa, T. Noiri, M. Ganster, and K. Dlaska, “On upper and lower θ–irresolute multifunctions,” J. Inst. Math. Comput. Sci. Ser. Math. 6, 137–149 (1993).MathSciNetzbMATHGoogle Scholar
  11. 11.
    T. Noiri and V. Popa, “On upper and lower almost β–continuous multifunctions,” Acta Math. Hungar. 82, 57–73 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    V. Popa and T. Noiri, “On almost m–continuous functions,” Math. Notae 40, 75–94 (1999–2002).MathSciNetzbMATHGoogle Scholar
  13. 13.
    T. Noiri and V. Popa, “A unified theory of almost continuity for multifunctions,” Sci. Stud. Res. Ser. Math. Inform. 20, 185–214 (2010).MathSciNetzbMATHGoogle Scholar
  14. 14.
    E. Ekici, S. Jafari and V. Popa, “On almost contra–continuous multifunctions,” Lobachevskii J. Math. 30, 124–131 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    K. Kuratowski, Topology (Academic, New York, 1966), Vol. 1.zbMATHGoogle Scholar
  16. 16.
    R. Vaidyanathaswamy, “The localization theory in set topology,” Proc. Indian Acad. Sci., Sect A 20, 51–61 (1944).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    D. Janković and T. R. Hamlett, “New topologies from old via ideals,” Am. Math. Mon. 97, 295–310 (1990).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. E. Abd El–Monsef, E. F. Lashien, and A. A. Nasef, “On I–open sets and I–continuous functions,” Kyungpook Math. J. 32, 21–30 (1992).MathSciNetzbMATHGoogle Scholar
  19. 19.
    A. Açikgöz, T. Noiri, and Ş. Yüksel, “On αI–continuous and αI–open functions,” Acta Math. Hungar. 105, 27–37 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    J. Dontchev, “On pre–I–open sets and decomposition of I–continuity,” Banyan Math. J. 2, (1996).Google Scholar
  21. 21.
    E. Hatir and T. Noiri, “On decompositions of continuity via idealization,” Acta Math. Hungar. 96, 341–349 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    E. Hatir and T. Noiri, “On semi–I–open sets and semi–I–continuous functions,” Acta Math. Hungar. 107, 345–353 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    E. Hatir, A. Keskin, and T. Noiri, “A note on strong βI–open sets and strong βI–continuous functions,” Acta Math. Hungar. 108, 87–94 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    E. Ekici and T. Noiri, “*–extremally disconnected ideal topological spaces,” ActaMath. Hungar. 122, 81–90 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    S. Yuksel, A. Acikgoz, and T. Noiri, “On δI–continuous functions,” Turk. J. Math. 29, 39–51 (2005).zbMATHGoogle Scholar
  26. 26.
    E. Hatir, A. Keskin and T. Noiri, “On a new decomposition of continuity via idealization,” JP J. Geom. Topol. 3, 53–64 (2003).MathSciNetzbMATHGoogle Scholar
  27. 27.
    E. Ekici, “On AC I–sets, BC I–sets, β I*-sets and decompositions of continuity in ideal topological spaces,” Creat. Math. Inform. 20, 47–54 (2011).MathSciNetzbMATHGoogle Scholar
  28. 28.
    E. Ekici and T. Noiri, “*-hyperconnected ideal topological spaces,” Anal. Al. I. Cuza Univ. Math. 58, 121–129 (2012).MathSciNetzbMATHGoogle Scholar
  29. 29.
    C. Berge, Espaces topologiques fonctions multivoques (Dunod, Paris, 1959).zbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of ScienceMahasarakham UniversityMahasarakhamThailand

Personalised recommendations