Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1293–1299 | Cite as

On Cohomogeneity Two Riemannian Manifolds of Non-Positive Curvature

  • H. AbediEmail author
Part 2. Special issue “Actual Problems of Algebra and Analysis” Editors: A. M. Elizarov and E. K. Lipachev
  • 7 Downloads

Abstract

We study a cohomogeneity two Riemannian G-manifold M of non-positive curvature. Considering the acting group G, we obtain some facts about the structure of such manifolds and their orbits. Moreover in some cases, the existence of the G-invariant metrics with non-positive (or negative) curvature on M is proved.

Keywords and phrases

Cohomogeneity two Riemannian manifold non-positive curvature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Alexandrino and R. G. Bettiol, Lie Groups and Geometric Aspects of Isometric Actions (Springer, Switzerland, 2015).CrossRefzbMATHGoogle Scholar
  2. 2.
    G. E. Bredon, Introduction to Compact Transformation Groups (Academic, New York, 1972).zbMATHGoogle Scholar
  3. 3.
    A. L. Onishchik, Lie Groups and Lie Algebras I (Springer, Berlin, Heidelberg, 1993).CrossRefzbMATHGoogle Scholar
  4. 4.
    R. Palais and C. L. Terng, Critical Point Theory and Submanifold Geometry, Vol. 1353 of Lecture Notes in Mathematics (Springer, Berlin, Heidelberg, New York, 1988).Google Scholar
  5. 5.
    S. Bechtluft-Sachs and D. J. Wraith, “Manifolds of low cohomogeneity and positive Ricci curvature,” Diff. Geom. Appl. 28, 282–289 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Kollross, “Low cohomogeneity representations and orbit maximal actions,” Ann. Glob. Anal. Geom. 23, 93–100 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    E. Naess and E. Straume, “Equivariant geometry in Euclidean G-Spheres of cohomogeneity two, I,” Geom. Dedic. 51, 133–148 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E. Straume, “Compact connected Lie transformation groups on spheres with low cohomogeneity I,” Mem. AMS 119 (569) (1996).Google Scholar
  9. 9.
    I. Bergmann, “Reducible polar representations,” Manuscr. Math. 104, 309–324 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    S. Kobayashi, Transformation Groups in Differential Geometry (Springer, Berlin, Heidelberg, 1995).zbMATHGoogle Scholar
  11. 11.
    J. Rotman, An Introduction to Algebraic Topology (Springer, New York, 1988).CrossRefzbMATHGoogle Scholar
  12. 12.
    R. Palais and C. L. Terng, “A general theory of canonical forms,” Trans. Am. Math. Soc. 300, 771–789 (1987).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    H. Abedi and S. M. B. Kashsni, “Cohomogeneity one Riemannian manifolds of constant positive curvature,” J. KoreanMat. Soc. 44, 799–807 (2007).MathSciNetzbMATHGoogle Scholar
  14. 14.
    L. Verdiani, “Invariant metrics on cohomogeneity one manifolds,” Geom. Dedic. 77, 77–111 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    H. Abedi, D. V. Alekseevsky, and S. M. B. Kashani, “Cohomogeneity one Riemannian manifolds of nonpositive curvature,” Diff. Geom. Appl. 25, 561–581 (2007).CrossRefzbMATHGoogle Scholar
  16. 16.
    R. L. Bishop and B. O’Neill, “Manifolds of negative curvature” Trans. Am. Math. Soc. 145, 1–49 (1969).MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. L. Onishchik and E. B. Vinberg, Lie Groups and Lie Algebras III (Springer, Berlin, Heidelberg, 1994).CrossRefzbMATHGoogle Scholar
  18. 18.
    A. Besse, Einstein Manifolds (Springer, Berlin, 1987).CrossRefzbMATHGoogle Scholar
  19. 19.
    R. Mendes, “Equivariant tensors on polar manifolds,” PhD Dissertation (Univ. of Pennsylvania, 2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Group of Mathematics, School of SciencesBu-Ali Sina UniversityHamedanIran

Personalised recommendations