Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1400–1402 | Cite as

Power Filtration on Morphisms of Formal Group Law

  • I. I. NekrasovEmail author
Part 2. Special issue “Actual Problems of Algebra and Analysis” Editors: A. M. Elizarov and E. K. Lipachev


The height filtration on the stack of formal groups \(\mathcal{M}\)FG is well known. We explore analogous filtration on a set of morphisms of formal group laws, which extends to the stack \(\mathcal{M}\)FG. It is correctly defined colimit object for this filtration which can be identified with the colimit \(\mathcal{M}\)FG,∞. As a corollary we prove explicitly density of additive formal group in any group law.

Keywords and phrases

formal group laws height filtration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. D. Smithling, “On the moduli stack of commutative, 1-parameter formal groups,” J. Pure Appl. Algebra 215, 368–397 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J. Tate, “p-Divisible groups,” in Proceedings of the Dreibergen Summer School on Local Field (Springer, Berlin, 1967).Google Scholar
  3. 3.
    J. Lubin, “One-parameter formal Lie groups over p-adic integer rings,” Ann. Math. 80, 464–484 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Yu. I. Manin, “The theory of commutative formal groups over fields of finite characteristic,” Russ. Math. Surv. 18 (6), 1–83 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Lubin, “Finite subgroups and isogenies of one-parameter formal Lie groups,” Ann. Math. 85, 296–302 (1967).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Chebyshev LaboratorySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations