Lobachevskii Journal of Mathematics

, Volume 39, Issue 9, pp 1396–1399 | Cite as

Topological Analysis of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4)

  • V. KibkaloEmail author
Part 2. Special issue “Actual Problems of Algebra and Analysis” Editors: A. M. Elizarov and E. K. Lipachev


In this paper we study the topology of the Liouville foliation for the integrable case of Euler’s equations on the Lie algebra so(4) discovered by I.V. Komarov, which is a generalization of the Kovalevskaya integrable case in rigid body dynamics. We generalize some results by A.V. Bolsinov, P.H. Richter, and A.T. Fomenko about the topology of the classical Kovalevskaya case. We also show how the Fomenko–Zieschang invariant can be calculated for every admissible curve in the image of the momentum map.

Keywords and phrases

Kovalevskaya integrable case Fomenko–Zieschang invariant marked molecule critical point of centre-centre type 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. T. Fomenko and A. V. Bolsinov, Integrable Hamiltonian Systems: Geometry, Topology, Classification (CRC, Boca Raton, FL, 2004).CrossRefzbMATHGoogle Scholar
  2. 2.
    A. V. Bolsinov, P. H. Richter, and A. T. Fomenko, “The method of loop molecules and the topology of the Kovalevskaya top,” Sb. Math. 191, 151–188 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4),” Sb. Math. 205, 532–572 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    I. V. Komarov, “Kowalewski basis for the hydrogen atom,” Teor. Mat. Fiz. 47, 320–324 (1981).CrossRefGoogle Scholar
  5. 5.
    A. T. Fomenko, “Topological invariants of Hamiltonian systems that are integrable in the sense of Liouville,” Funct. Anal. Appl. 22, 286–296 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. T. Fomenko, “The theory of invariants of multidimensional integrable Hamiltonian systems,” Adv. Sov. Math., Am. Math. Soc. 6, 1–27 (1991).zbMATHGoogle Scholar
  7. 7.
    A. T. Fomenko and A. Yu. Konyaev, “New approach to symmetries and singularities in integrable Hamiltonian systems,” Topology Appl. 159, 1964–1975 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. P. Kharlamov, “Bifurcation of common levels of first integrals of the Kovalevskaya problem,” J. Appl. Math. Mech. 47, 737–743 (1983).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Lomonosov Moscow State University, GSP-1MoscowRussia

Personalised recommendations