Nanotechnologies in Russia

, Volume 14, Issue 3–4, pp 159–164 | Cite as


  • A. A. Ostroushko
  • I. F. Gette
  • S. A. Brilliant
  • I. G. DanilovaEmail author


The widespread occurrence of anemia and the presence of side-effects of existing iron-containing drugs require the search for new drugs. In an experiment on male rats of the Wistar strain, posthemorrhagic anemia is simulated by collecting blood from the tail vein in an amount of 1.5% of body weight. Intramuscular administration of iron–molybdenum polyoxometallates in an amount of 1.5 mg/kg to rats with anemia results in a faster restoration of the content of red blood cells and hemoglobin, the hematocrit value in the blood, the concentration of iron in the blood plasma, and the content of erythrocyte precursors in the bone marrow, which recover one to seven days earlier than the parameters measured in a control group of untreated animals.



This study was conducted while implementing the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (project nos. 4.6653.2017/8.9 and AAAA-A18-118020590107-0). The data are protected by patent no. 267 1077 of the Russian Federation.


  1. 1.
    P. A. Vorobiev, Anemic Syndrome in Clinical Practice (Newdiamed, Moscow, 2001), p. 16 [in Russian].Google Scholar
  2. 2.
    B. de Benoist, E. McLean, I. Egli, and M. Cogswell, Worldwide Prevalence of Anaemia 1993–2005: WHO Global Database on Anaemia (World Health Organization, Genewa, 2008).Google Scholar
  3. 3.
    S. R. Pasricha and H. Drakesmith, “Iron deficiency anemia: problems in diagnosis and prevention at the population level,” Hematol. Oncol. Clin. North Am. 30, 309 (2016).CrossRefGoogle Scholar
  4. 4.
    V. Kumar, H. Haridas, P. Hunsigi, et al., “Evaluation of dental and bone age in iron-deficient anemic children of South India,” J. Int. Soc. Prev. Commun. Dent. 6, 430 (2016).CrossRefGoogle Scholar
  5. 5.
    I. R. Demuth, A. Martin, and A. Weissenborn, “Iron supplementation during pregnancy—a cross-sectional study undertaken in four german states,” BMC Pregnancy Childbirth 18, 491 (2018).CrossRefGoogle Scholar
  6. 6.
    M. Levi, M. Rosselli, M. Simonetti, et al., “Epidemiology of iron deficiency anaemia in four European countries: a population-based study in primary care,” Eur. J. Haematol. 97, 583 (2016).CrossRefGoogle Scholar
  7. 7.
    Anemia in Children: Diagnosis, Differential Diagnosis, Treatment, Ed. A. G. Rumyantsev and Yu. N. Tokarev, 2nd ed. (MAX Press, Moscow, 2004) [in Russian].Google Scholar
  8. 8.
    V. A. Rodionov and M. S. Agandeyeva, “The prevalence of anemia in children of the city of Cheboksary,” Vestn. Chuvash. Univ., No. 3, 491 (2013).Google Scholar
  9. 9.
    M. Nairz, I. Theurl, D. Wolf, and G. Weiss, “Iron deficiency or anemia of inflammation?: differential diagnosis and mechanisms of anemia of inflammation,” Wien. Med. Wochenschr. 166 (13–14), 411 (2016).CrossRefGoogle Scholar
  10. 10.
    Hematology Manual, Ed. by A. I. Vorob’ev (Newdiamed, Moscow, 2005), Vol. 3 [in Russian].Google Scholar
  11. 11.
    M. Hertl, Padiatrische Differentialdiagnose (Georg Thieme, Stuttgart, New York, 1986), Vol. 2.Google Scholar
  12. 12.
    G. Weiss, T. Ganz, and L. T. Goodnough, “Anemia of inflammation,” Blood 133, 40 (2019).CrossRefGoogle Scholar
  13. 13.
    A. C. Ross, “Impact of chronic and acute inflammation on extra- and intracellular iron homeostasis,” Am. J. Clin. Nutr. 106, 1581 (2017).CrossRefGoogle Scholar
  14. 14.
    J. Wang and K. Pantopoulos, “Regulation of cellular iron metabolism,” Biochem. J. 434, 365 (2011).CrossRefGoogle Scholar
  15. 15.
    A. G. Rumyantsev, I. N. Zakharova, and V. M. Chernov, “Prevalence of iron deficiency,” Med. Sovet, No. 6, 62 (2015).Google Scholar
  16. 16.
    I. S. Tarasova, “Iron deficiency anemia in children and adolescents,” Vopr. Sovrem. Periatr. 10 (2), 40 (2011).Google Scholar
  17. 17.
    K. P. Flores, S. E. Blohowiak, J. J. Winzerling, et al., “The impact of erythropoietin and iron status on brain myelination in the newborn rat,” J. Neuros. Res. 96, 1586 (2018).CrossRefGoogle Scholar
  18. 18.
    T. W. Bastian, W. C. von Hohenberg, D. J. Mickelson, et al., “Iron deficiency impairs developing hippocampal neuron gene expression, energy metabolism, and dendrite complexity,” Dev. Neurosci. 38, 264 (2016).CrossRefGoogle Scholar
  19. 19.
    S. E. Juul, R. J. Derman, and M. Auerbach, “Perinatal iron deficiency: implications for mothers and infants,” Neonatology 115, 269 (2019).CrossRefGoogle Scholar
  20. 20.
    L. M. Winchester, J. Powell, S. Lovestone, and A. J. Nevado-Holgado, “Red blood cell indices and anaemia as causative factors for cognitive function deficits and for Alzheimer’s disease,” Genome Med. 10, 51 (2018).CrossRefGoogle Scholar
  21. 21.
    C. S. Lam, W. Doehner, and J. Comin-Colet, “Iron deficiency in chronic heart failure: case-based practical guidance,” ESC Heart Fail 5, 764 (2018).CrossRefGoogle Scholar
  22. 22.
    G. Tourniaire, C. Milesi, J. Baleine, et al., “Anemia, a new severity factor in young infants with acute viral bronchiolitis?,” Arch Pediatr. 25, 189 (2018).CrossRefGoogle Scholar
  23. 23.
    P. Nielsen, R. Kongi, and R. Fischer, “Efficacy of an iron retard preparation in patients with iron deficiency anemia,” MMW Fortschr. Med. 158 (6), 17 (2016).CrossRefGoogle Scholar
  24. 24.
    V. N. Chernov and I. S. Tarasova, “What drug should be chosen for the treatment of iron deficiency anemia in children—salt or hydroxide-based polymaltose iron complex?,” Pediatriya 91 (5), 90 (2012).Google Scholar
  25. 25.
    P. Geisser, “The pharmacology and safety profile of ferric carboxymaltose (Ferinject(R)): structure/reactivity relationships of iron preparations,” Port. J. Nephrol. Hypert. 23 (1), 11 (2009).Google Scholar
  26. 26.
    S. V. Moiseev, “Iron carboxymaltozat (Ferinzhekt)—a new intravenous drug for the treatment of iron deficiency anemia,” Klin. Farmakol. Ter. 21 (2), 2 (2012).Google Scholar
  27. 27.
    I. G. Danilova, I. F. Gette, S. Yu. Medvedeva, et al., “Influence of iron-molybdenum nanocluster polyoxometalates on the apoptosis of blood leukocytes and the level of heat-shock proteins in the cells of thymus and spleen in rats,” Nanotechnol. Russ. 11, 653 (2016).CrossRefGoogle Scholar
  28. 28.
    A. Müller, E. Krickemeyer, H. Bögge, et al., “Organizational forms of matter: an inorganic superfullerene and keplerate based on molybdenum oxide,” Angew. Chem. Int. Ed. 37, 3360 (1998).Google Scholar
  29. 29.
    A. Müller, S. Sarkar, S. Q. Nazir Shah, et al., “Archimedian synthesis and magic numbers: ‘sizing’ giant molybdenum—oxide based molecular spheres of the keplerate type,” Angew. Chem., Int. Ed. Engl. 38, 3238 (1999).CrossRefGoogle Scholar
  30. 30.
    A. A. Ostrousko, M. O. Tonkushina, V. Yu. Korotaev, et al., “Stability of the Mo72Fe30 polyoxometalate buckyball in solution,” Russ. J. Inorg. Chem. 57, 1210 (2012).CrossRefGoogle Scholar
  31. 31.
    A. A. Ostroushko and M. O. Tonkushina, “Destruction of molybdenum nanocluster polyoxometallates in aqueous solutions,” Russ. J. Phys. Chem. A 89, 443 (2015).CrossRefGoogle Scholar
  32. 32.
    A. A. Ostroushko, I. F. Gette, I. G. Danilova, et al., “Studies on the possibility of introducing iron-molybdenum buckyballs into an organism by electrophoresis,” Nanotechnol. Russ. 9, 586 (2014).CrossRefGoogle Scholar
  33. 33.
    A. A. Ostroushko, I. F. Gette, S. Yu. Medvedeva, et al., “Study of acute and subacute action of iron-molybdenum nanocluster polyoxometallates,” Nanotechnol. Russ. 8, 672 (2013).CrossRefGoogle Scholar
  34. 34.
    A. A. Ostroushko, I. F. Gette, S. Yu. Medvedeva, et al., “Safety assessment of iron-molybdenum nanocluster polyoxometalates intended for targeted drug delivery,” Vestn. Ural. Med. Akad. Nauki 34 (2), 107 (2011).Google Scholar
  35. 35.
    A. A. Ostroushko, I. G. Danilova, I. F. Gette, et al., “Study of safety of molybdenum and iron-molybdenum nanocluster polyoxometalates intended for targeter delivery of drugs,” J. Biomater. Nanobiotechnol., No. 2, 557 (2011).CrossRefGoogle Scholar
  36. 36.
    I. F. Gette, I. G. Danilova, and A. A. Ostroushko, “The content of histone proteins in blood lymphocytes and the manifestation of the inflammatory process,” Ross. Immunol. Zh. 1, 444 (2015).Google Scholar
  37. 37.
    I. G. Danilova, I. F. Gette, S. Yu. Medvedeva, et al., “Changing the content of histone proteins and heat-shock proteins in the blood and liver of rats after the single and repeated administration of nanocluster iron-molybdenum polyoxometallates,” Nanotechnol. Russ. 10, 820 (2015).CrossRefGoogle Scholar
  38. 38.
    B. G. Yushkov, V. G. Klimin, and M. V. Severin, The Blood System and Extreme Effects on the Body (Ural. Otdel. RAS, Yekaterinburg, 1999) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Ostroushko
    • 1
  • I. F. Gette
    • 3
  • S. A. Brilliant
    • 2
    • 3
  • I. G. Danilova
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Natural Sciences and Mathematics, Ural Federal University named after the First President of Russia B.N. YeltsinYekaterinburgRussia
  2. 2.Institute of Medical Cellular TechnologiesYekaterinburgRussia
  3. 3.Institute of Immunology and Physiology, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations