Advertisement

CERAMIC COMPOSITE BASED ON ZIRCONIA REINFORCED BY SINGLE-WALLED CARBON NANOTUBES

  • 14 Accesses

Abstract

The effect of the relative content of single-walled carbon nanotubes (SWCNTs) on the compaction, phase composition, microstructure, and mechanical properties of composites based on yttria-stabilized zirconia obtained via spark plasma sintering is studied. We found that a substantial increase in the relative density from 98.26 to 99.98% is observed in the composites containing 0.1 and 0.5 wt % SWCNT. It is established that SWCNTs partially limit the monoclinic–tetragonal transition occurring during high-temperature treatment of zirconia. The fracture toughness of the composite containing 1 wt % SWCNT increases by 38% compared to ceramics without additives.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. 1

    T. V. Hughes and C. R. Chambers, “Manufacture of carbon filaments,” US Patent No. 405480 (1889).

  2. 2

    P. Schutzenberger and L. Schutzenberger, “Sur quelques faits relatifs l’histoire du carbone,” Acad. Sci. Paris 111, 774 (1890).

  3. 3

    L. V. Radushkevich and V. M. Luk’yanovich, “On the structure of carbon formed during the thermal decomposition of carbon monoxide on an iron contact,” Zh. Fiz. Khim. 26, 88 (1952).

  4. 4

    S. Iijima, “Helical microtubules of graphitic carbon,” Nature (London, U.K.) 354, 56 (1991). https://doi.org/10.1038/354056a0

  5. 5

    S. S. Samal and S. Bal, “Carbon nanotube reinforced ceramic matrix composite—a review,” J. Min. Mater. Char. Eng. 7, 4236 (2008). https://doi.org/10.4236/jmmce.2008.74028

  6. 6

    A. Peigney, C. H. Laurent, E. Flahaut, and A. Rousset, “Carbon nanotubes in novel ceramic matrix nanocomposites,” Ceram. Int. 26, 677 (2000). https://doi.org/10.1016/S0272-8842(00)00004-3

  7. 7

    M. Yu, O. Lourie, M. J. Dyer, et al., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science (Washington, DC, U. S.) 287, 1126 (2000). https://doi.org/10.1126/science.287.5453.637

  8. 8

    M. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett. 84, 5552 (2000). https://doi.org/10.1103/PhysRevLett.84.5552

  9. 9

    A. Thess, R. Lee, P. Nikolaev, et al., “Crystalline ropes of metallic carbon nanotubes,” Science (Washington, DC, U. S.) 273, 483 (1996). https://doi.org/10.1126/science.273.5274.483

  10. 10

    Y. Ando, X. Zhao, H. Shimoyama, et al., “Physical properties of multiwalled carbon nanotubes,” Int. J. Inorg. Mater. 1, 77 (1999). https://doi.org/10.1016/S1463-0176(99)00012-5

  11. 11

    S. Berber, Y. K. Kwon, and D. Tomanek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613 (2000). https://doi.org/10.1103/PhysRevLett.84.4613

  12. 12

    P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett. 87, 215502 (2001). https://doi.org/10.1103/PhysRevLett.87.215502

  13. 13

    E. A. Lyapunova, M. V. Grigor’ev, A. P. Skachkov, et al., “Structure and mechanical properties of zirconium oxide modified with carbon nanotubes,” Vestn. PNIPU, Mekh., No. 4, 10 (2015).https://doi.org/10.15593/perm.mech/2015.4.18

  14. 14

    Yu. I. Golovin, B. Ya. Farber, V. V. Korenkov, et al., “Mechanical properties of baddeleyite nanoceramics modified by carbon nanotubes,” Vestn. TGU, Estestv. Tekh. Nauki 17, 1380 (2012).

  15. 15

    A. A. Leonov, “Microstructure and properties of single wall carbon nanotubes/zirconia composite,” in Proceedings of the International Conference with School and Master-Classes for Young Scientists on Chemical Technology of Functional Materials, Moscow, Nov. 30–Dec. 1,2017 (RKhTU im. D.I. Mendeleeva, Moscow, 2017), p. 35.

  16. 16

    Yu. I. Golovin, A. I. Tyurin, V. V. Korenkov, V. V. Rodaev, A. O. Zhigachev, A. V. Umrikhin, T. S. Pirozhkova, and S. S. Razlivalova, “Effect of carbon nanotubes on strength characteristics of nanostructured ceramic composites for biomedicine,” Nanotechnol. Russ. 13, 168 (2018).

  17. 17

    J. H. Shin and S. H. Hong, “Microstructure and mechanical properties of single wall carbon nanotube reinforced yttria stabilized zircona ceramics,” Mater. Sci. Eng., A 556, 382 (2012). https://doi.org/10.1016/j.msea.2012.07.001

  18. 18

    J. P. Zhou, Q. M. Gong, K. Y. Yuan, et al., “The effects of multiwalled carbon nanotubes on the hot-pressed 3 mol % yttria stabilized zirconia ceramics,” Mater. Sci. Eng. A 520, 153 (2009). https://doi.org/10.1016/j.msea.2009.05.014

  19. 19

    A. Leonov, “Effect of alumina nanofibers content on the microstructure and properties of ATZ composites fabricated by spark plasma sintering,” Mater. Today: Proc. 11, 66 (2019). https://doi.org/10.1016/j.matpr.2018.12.108

  20. 20

    A. A. Leonov and E. V. Abdulmenova, “Alumina-based composites reinforced with single-walled carbon nanotubes,” IOP Conf. Ser.: Mater. Sci. Eng. 511, 012001 (2019). https://doi.org/10.1088/1757-899X/511/1/012001

  21. 21

    G. R. Anstis, P. Chantikul, B. N. Lawn, and D. B. Marshall, “A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements,” J. Am. Ceram. Soc. 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x

  22. 22

    A. Kasperski, A. Weibel, D. Alkattan, et al., “Microhardness and friction coefficient of multi-walled carbon nanotube-yttria-stabilized ZrO2 composites prepared by spark plasma sintering,” Scr. Mater. 69, 338 (2013). https://doi.org/10.1016/j.scriptamat.2013.05.015

  23. 23

    R. Hassan, A. Nisar, S. Ariharan, et al., “Multi-functionality of carbon nanotubes reinforced 3 mol % yttria stabilized zirconia structural biocomposites,” Mater. Sci. Eng., A 704, 329 (2017). https://doi.org/10.1016/j.msea.2017.08.039

  24. 24

    M. Mazaheri, D. Mari, Z. R. Hesabi, et al., “Multi-walled carbon nanotube/nanostructured zirconia composites: outstanding mechanical properties in a wide range of temperature,” Compos. Sci. Technol. 71, 939 (2011). https://doi.org/10.1016/j.compscitech.2011.01.017

  25. 25

    L. Shen, Y. H. Han, C. Xiang, et al., “Phase transformation behavior of ZrO2 by addition of carbon nanotubes consolidated by spark plasma sintering,” Scr. Mater. 69, 736 (2013). https://doi.org/10.1016/j.scriptamat.2013.08.015

  26. 26

    L. Melk, J. J. Roa Rovira, F. Garcaía-Marro, et al., “Nanoindentation and fracture toughness of nanostructured zirconia/multi-walled carbon nanotube composites,” Ceram. Int. 41, 2453 (2015). https://doi.org/10.1016/j.ceramint.2014.10.060

  27. 27

    R. Poyato, J. Macias-Delgado, A. Gallardo-López, et al., “Microstructure and impedance spectroscopy of 3YTZP/SWNT ceramic nanocomposites,” Ceram. Int. 41, 12861 (2015). https://doi.org/10.1016/j.ceramint.2015.06.123

  28. 28

    R. Poyato, A. Gallardo-López, F. Gutiérrez-Mora, et al., “Effect of high SWNT content on the room temperature mechanical properties of fully dense 3YTZP/SWNT composites,” J. Eur. Ceram. Soc. 34, 1571 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.024

  29. 29

    M. H. Bocanegra-Bernal, A. Reyes-Rojas, A. Aguilar-Elguezabal, et al., “X-ray diffraction evidence of a phase transformation in zirconia by the presence of graphite and carbon nanotubes in zirconia toughened alumina composites,” Int. J. Refract. Met. Hard Mater. 35, 315 (2012). https://doi.org/10.1016/j.ijrmhm.2012.07.004

  30. 30

    A. A. Leonov, A. O. Khasanov, V. A. Danchenko, and O. L. Khasanov, “Spark plasma sintering of ceramic matrix composite based on alumina, reinforced by carbon nanotubes,” IOP Conf. Ser.: Mater. Sci. Eng. 286, 012034 (2017). https://doi.org/10.1088/1757-899X/286/1/012034

  31. 31

    G. Yamamoto, Y. Sato, T. Takahashi, et al., “Preparation of single-walled carbon nanotube solids and their mechanical properties,” J. Mater. Res. 20, 2609 (2005). https://doi.org/10.1557/JMR.2005.0345

  32. 32

    A. Datye, K. Wu, G. Gomes, et al., “Synthesis, microstructure and mechanical properties of yttria stabilized zirconia (3YTZP)-multi-walled nanotube (MWNTs) nanocomposite by direct in-situ growth of MWNTs on zirconia particles,” Compos. Sci. Technol. 70, 2086 (2010). https://doi.org/10.1016/j.compscitech.2010.08.005

  33. 33

    R. Poyato, J. Macias-Delgado, A. Garcia-Valenzuela, et al., “Mechanical and electrical properties of low SWNT content 3YTZP composites,” J. Eur. Ceram. Soc. 35, 2351 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.02.022

  34. 34

    A. Kasperski, A. Weibel, D. Alkattan, et al., “Double-walled carbon nanotube/zirconia composites: preparation by spark plasma sintering, electrical conductivity and mechanical properties,” Ceram. Int. 41, 13731 (2015). https://doi.org/10.1016/j.ceramint.2015.08.034

  35. 35

    G. Suárez, B. K. Jang, E. F. Aglietti, and Y. Sakka, “Fabrication of dense ZrO2/CNT composites: influence of bead-milling treatment,” Metall. Mater. Trans. A 44, 4374 (2013). https://doi.org/10.1007/s11661-013-1775-y

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.R. Predtechenskii and A.E. Bezrodnyi for providing “Tuball” single-walled carbon nanotubes.

FUNDING

The study was performed on the basis of Nano Center of National Research Tomsk Polytechnic University.

Author information

Correspondence to A. A. Leonov.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leonov, A.A., Dvilis, E.S., Khasanov, O.L. et al. CERAMIC COMPOSITE BASED ON ZIRCONIA REINFORCED BY SINGLE-WALLED CARBON NANOTUBES. Nanotechnol Russia 14, 118–124 (2019) doi:10.1134/S1995078019020095

Download citation